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Abstract

Bubbly Markov Equilibria (BME) are recursive equilibria on the natural state

space which admit a non-trivial bubble. The present paper studies the exis-

tence and properties of BME in a general class of overlapping generations (OLG)

economies with capital accumulation and stochastic production shocks. Using

methods from functional analysis, we develop a general approach to construct

Markov equilibria and provide necessary and sufficient conditions for these equi-

libria to be bubbly. Our main result shows that a BME exists whenever the bub-

bleless equilibrium is Pareto inefficient either due to overaccumulation of capital

or inefficient risk-sharing between generations.

JEL classification: C62, D51, E32

Keywords: Asset Bubbles, Stochastic OLG, Production, Markov Equilibria, Pareto Optimal-

ity.

∗We would like to thank Tim Deeken, Tomoo Kikuchi, Herakles Polemarchakis, Clemens Puppe,
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Introduction

A bubble is an intrinsically worthless asset which trades at a positive price such as fiat

money, governmental debt, or a bond that never pays any dividends. The emergence of

such a bubble has two important macroeconomic effects. First, it affects the formation

of capital by providing an alternative investment opportunity to investors. Second, it

creates an additional insurance possibility which affects the risk sharing arrangements

among consumers.

The present paper studies the existence and properties of bubbly equilibria in a unifying

framework that incorporates both of these effects as well as their mutual interactions.

To the best of our knowledge, we are the first to offer a comprehensive analysis of this

type. In order to account for the investment effect of bubbles, we place our study in

the class of overlapping generations (OLG) models with production and endogenous

capital accumulation. To capture the risk sharing effect, we use a stochastic setup with

exogenous random production shocks. Finally, we include a dividend paying asset in

our model. An asset bubble corresponds to the limiting case where dividends are zero

but the price of the asset remains strictly positive.

With the previous features, our setup encompasses the case of a deterministic production

economy studied in Tirole (1985) as well as stochastic models with pure exchange as in

Manuelli (1990), Aiyagari & Peled (1991), Barbie & Kaul (2015) or Magill & Quinzii

(2003). By construction, these studies either neglect the investment or the risk sharing

effect of bubbles. In this sense, our framework contains these models as special cases

and we will discuss which role the previous existence results play in our extended setup.

The stochastic OLG model with production has been studied in Wang (1993, 1994)

and, more recently, in Morand & Reffett (2007), McGovern et al. (2013), and Hillebrand

(2014). All these studies focus on a particular class of equilibria in which the equilibrium

variables are determined by time-invariant mappings on the minimal or ’natural’ state

space. Following Kübler & Polemarchakis (2004), such equilibria will be called Markov

Equilibria (ME). Extending this terminology, we call a ME which admits a bubble a

Bubbly Markov Equilibrium (BME). Identifying conditions under which a BME exists

and characterizing its properties is the general objective of this paper.

The first part of our analysis lays out a general method to construct potentially bubbly

ME. This sets the stage to establish a general existence theorem for BME in the second

part. A first major obstacle to construct ME in our setup is that the pointwise fixed

point methods employed in Wang (1993) are no longer applicable. For this reason, our

construction is based on monotone methods from functional analysis similar to Coleman

(1991, 2000), or Greenwood & Huffman (1995). This approach was successfully applied

in Morand & Reffett (2007) to study bubbleless ME, and we will show how it can be

extended to study BME as well. The method to be developed is also constructive and

can directly be employed to compute BME numerically in applications of our results.
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The goal of the second part is to provide necessary and sufficient conditions under which

the ME constructed is bubbly. Our main result shows that this is the case whenever

the bubbleless equilibrium is Pareto inefficient. Such an inefficiency can be the result

of dynamic inefficiency as studied in Zilcha (1990), but may also be due to inefficient

risk-sharing among generations. Thus, a major difference to the deterministic result

in Tirole (1985) is that bubbly equilibria can emerge in stochastic economies which

are dynamically efficient. We expect this result to have many promising applications

such as the sustainability and optimal risk structure of governmental debt as studied

in Ball, Elmendorf & Mankiw (1998) or the risk sharing properties of social security

systems analyzed in Gottardi & Kübler (2011). In such applications, our construction

of BME provides an algorithm for explicitly determining sustainable debt policies and

the optimal risk indexation of debt returns or social security transfers.

A major challenge to establish our existence result is that it requires a workable crite-

rion to determine when an equilibrium allocation is Pareto inefficient. Building on the

results from Chattopadhyay & Gottardi (1999), a complete characterization of Pareto

optimality in stochastic OLG production economies is provided in Barbie, Hagedorn &

Kaul (2007). The criterion employed in this paper essentially combines their results with

the recursive characterization of Pareto optimality developed in Barbie & Kaul (2015).

This leads to a sort of dominant root criterion in the presence of a continuous state

space, which is formulated in Barbie & Kaul (2015) for a stationary exchange economy.

Similar criteria for efficiency/inefficiency are derived in Demange & Laroque (2000).

Based on this criterion, we establish our existence result by constructing a sequence of

economies with a dividend-paying asset whose dividends converge to zero. Each such

economy is known to have only efficient ME. Under some additional restrictions, the

limiting ME of the benchmark economy is also efficient. Thus, a BME necessarily exists

whenever the bubbleless equilibrium is known to be Pareto inefficient.

The paper is organized as follows. Section 1 introduces the model and defines the

concept of a Markov equilibrium. Section 2 develops a general approach to construct

these equilibria. Section 3 contains the main results which state necessary and sufficient

conditions under which the ME constructed is bubbly. Section 4 concludes; technical

proofs and derivations are relegated to the Mathematical Appendices A and B.

1 The Model

This section introduces the structure and assumptions of the basic model and formalizes

the concept of a Markov equilibrium which will be at the core of the subsequent analysis.
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1.1 Production sector

The production side is represented by a single firm which operates a linear homoge-

neous technology to produce an all-purpose output commodity using capital and labor

as inputs. In addition, production in period t is subjected to an exogenous random

production shock θt > 0. At equilibrium, labor supply will be constant and normal-

ized to unity. Given the shock, the intensive form production function f : R+ −→ R+

determines production output yt in period t from the existing stock of capital kt ≥ 0 as

yt = θtf(kt).

As in Wang (1993), shocks are i.i.d. over time with (marginal) distribution ν supported

on the compact set Θ ⊂ R++. Let θmin denote the minimal and θmax the maximal

realization of the shock. The formal arguments in Section 3 assume that Θ is a finite set.

The process {θt}t≥0 induces a probability space (Ω,F ,P) on which all random variables

are defined and a filtration {Ft}t≥0 such that θt is Ft-measurable. Throughout, the

notion of an adapted stochastic process {ξt}t≥0 refers to this filtration and implies that

each ξt can depend only on random variables θn, n ≤ t. Moreover, Et[·] := E[·|Ft] is the

conditional expectations operator.

The following restrictions on f are standard and will be imposed throughout the paper.

Assumption 1

The map f : R+ −→ R+ is C2 with derivatives f ′′ < 0 < f ′ and limk→0 f
′(k) = ∞.

Moreover, there exists an upper bound k̄ > 0 such that θmaxf(k) < k whenever k > k̄.

Market clearing and profit maximizing behavior imply that the equilibrium wage wt and

capital return rt are determined by the capital stock kt > 0 and the shock as θt ∈ Θ as

wt = W (kt, θt) := θt[f(kt)− ktf ′(kt)] (1a)

rt = R(kt, θt) := θt f
′(kt). (1b)

Denote by Eφ(z) := | zφ
′(z)

φ(z)
|, z ∈ R the (absolute) elasticity of a differentiable function

φ 6= 0. Below we will occasionally impose the following additional restrictions on f :

(T1)Ef ′ ≤ 1 (T2) 2Ef ′ ≥ 1.

As (T1) is equivalent to k 7→ kR(k, θ) being weakly increasing, this restriction is known

as ’capital income monotonicity’ and often imposed in the literature, cf. Wang (1993),

Hauenschild (2002), and others. It holds in the Cobb-Douglas case f(k) = kα for

0 < α < 1 and also for CES technologies f(k) = [1 − a + ak%]
1
% where 0 < a < 1 and

0 < % < 1. The second restriction (T2) imposes a uniform lower bound on the elasticity

of f ′. In the Cobb-Douglas case, this restricts α to the empirically relevant case α ≤ 1
2
.

When imposed, the previous conditions are only required to hold on the bounded set

K =]0, kmax] defined below.
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1.2 Consumption sector

The consumption sector consists of overlapping generations of consumers who live for

two periods. For simplicity, there is no population growth and the size of each genera-

tion is normalized to unity. Young consumers earn income from supplying one unit of

labor inelastically to the labor market while old consumers earn the proceeds on their

investments made during the previous period.

To transfer income to the second period of life, there are two investment possibilities

available to a young consumer in period t. First, she can invest in capital to earn the

uncertain capital return rt+1 in the next period per unit invested at time t. Second, she

can invest in assets given by retradeable shares of a fruit tree (Lucas tree) which pay a

constant non-random dividend d ≥ 0 in each period. Let pt ≥ 0 denote the asset price

per share in period t ≥ 0. The total supply of shares is normalized to unity.

A young consumer in period t observes her labor income wt > 0 and the buying price of

shares pt ≥ 0 while taking the selling price pt+1 ≥ 0 and the capital return rt+1 > 0 as

given random variables in her decision. The consumer chooses the desired investments

in capital s and in shares z to maximize expected lifetime utility. Assuming an addi-

tive von-Neumann Morgenstern utility function U(cy, co) = u(cy) + v(co) over lifetime

consumption, the decision problem reads:

max
z,s

{
u(wt − z pt − s) + Et

[
v
(
z (pt+1 + d) + s rt+1

)]∣∣ s ≥ 0, z ≥ 0, z pt + s ≤ wt

}
. (2)

Throughout, we impose the following standard restrictions on the utility functions.

Assumption 2

Both g ∈ {u, v} are C2 with derivatives satisfying g′′ < 0 < g′ and limc→0 g
′(c) =∞.

The capital investment st in period t determines the capital stock kt+1 of the following

period. Combining this with the first-order conditions of the decision problem (2), one

obtains the following Euler equations which must hold in each period t at equilibrium:

u′(wt − pt − kt+1) = Et
[
rt+1v

′(pt+1 + d+ kt+1rt+1)
]

(3a)

u′(wt − pt − kt+1)pt = Et
[
(pt+1 + d)v′(pt+1 + d+ kt+1rt+1)

]
. (3b)

The following additional restrictions on v will occasionally be used in the sequel:

(U1) Ev′ ≤ 1 (U2) Ev′ ≡ θ.

Condition (U1) is again a standard restriction also imposed in Morand & Reffett (2007)

or McGovern et al. (2013). Under (U2) second-period utility v displays constant relative

risk aversion, an assumption that is more restrictive but also widely used in applied

macroeconomic models.
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1.3 Markov Equilibria (ME)

The dividend payment d ≥ 0 will be a key parameter in our analysis. For a given value

d ≥ 0, the economy is summarized by the list Ed = 〈u, v, f, ν, d〉 plus initial conditions

for capital k0 > 0 and the shock θ0 ∈ Θ. Specifically, we refer to the economy E := E0

in which dividend payments are zero as as the benchmark economy in our framework.

Note that E corresponds to the economy studied in Wang (1993).

The following definition is standard and provides the most general notion of equilibrium.

Definition 1

Given initial values k0 > 0 and θ0 ∈ Θ, a sequential equilibrium (SE) of Ed is an adapted

stochastic process
{
wt, rt, pt, kt+1

}
t≥0

which satisfies (1a,b) and (3a,b) for all t ≥ 0.

The induced equilibrium consumption processes can be recovered as cyt = wt− pt− kt+1

and cot = ktrt + pt + d = θtf(kt) + d− cyt − kt+1 for all t ≥ 0.

In this paper, we focus on a particular class of equilibria where all equilibrium variables

are determined by time-invariant functions of some state variable xt which takes values

in the state space X. In the literature, such equilibria are called Recursive Equilibria

(RE). We confine ourselves to a particular class of recursive equilibria where the state

variable is xt = (kt, θt). The underlying state space X is called the natural state space.

Note that the factor price mappings W and R from (1a,b) already satisfy this property.

Following the terminology of Kübler & Polemarchakis (2004), RE on the natural state

space are called Markov Equilibria (ME). In the following definition, X ⊂ R++ × Θ is

assumed to be a non-empty Borel set which will be constructed explicitly in the next

section.

Definition 2

A SE of Ed is called a Markov equilibrium (ME) on X if there exists measurable mappings

KE
d : X −→ R++ and PE

d : X −→ R+ such that kt+1 = KE
d (kt, θt) and pt = PE

d (kt, θt)

for all t ≥ 0 and all x0 = (k0, θ0) ∈ X.

A primary goal of this paper is to study ME (KE, PE) of the benchmark economy E = E0

where dividend payments are zero (we will occasionally drop the subscript if d = 0).

In particular, we ask whether such equilibria admit a bubble, i.e., can be supported by

a non-zero asset price process. Extending the previous terminology, we refer to a ME

which admits a bubble as a Bubbly Markov Equilibrium (BME). Formally, we have

Definition 3

A ME (KE, PE) of E is called bubbly if PE 6= 0 and bubbleless if PE = 0.

In addition to their theoretical appeal, bubbly ME have several important applications

and admit various alternative interpretations. One such application concerns the sus-

tainability and optimal risk structure of governmental debt. Suppose in each period t, a
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government issues one-period bonds with unit price and (risk-indexed) return r∗t+1 to fi-

nance its current debt bt > 0. Then, the process {bt}t≥0 which evolves as bt+1 = r∗t+1bt is

formally equivalent to a bubble in our previous framework. Exploiting this equivalence,

the value PE(xt) defines the maximum level of debt that is sustainable if the current

fundamental state is xt ∈ X. Further, the optimal risk structure of the return offered in

period t needed to sustain this maximum level is determined by the random variable

r∗t+1 := R∗(xt, ·) =
PE(KE(xt), ·)

PE(xt)
. (4)

The existence of a BME is therefore equivalent to a positive equilibrium level of debt

that can be sustained without further stabilization such as taxation, etc. Also note that

(4) would permit to explicitly compute the Arrow-Debreu prices of risk at equilibrium.

An alternative interpretation of a BME is that of a monetary equilibrium in which a

fixed quantity M > 0 of fiat money is exchanged between successive generations. In this

case, the price pt > 0 corresponds to real money balances in period t.

One can also interpret a BME as an equilibrium with a social security system in which

pt > 0 represents the transfers from young to old consumers in period t ≥ 0. A particular

appealing feature that follows from the Euler equation (3b) is that such a system is time

consistent in the sense that no generation has an incentive to change it (see Hillebrand

(2011) for an application of this concept). Thus, a BME directly implies the existence

of a time-consistent Social Security system.

In the following section we show that the properties of the (unique) bubbleless ME of

E are key to construct the state space X associated with any ME of Ed where d ≥ 0.

1.4 Restricting the state space

It is shown in Wang (1993) and Hillebrand (2014) that either restriction (T1) or (U1)

is sufficient for the benchmark economy E to possess a unique bubbleless ME. In this

case, the equilibrium mappings are given by PE
0 ≡ 0 and KE

0 = K0 ◦W where K0 :

R++ −→ R++ determines the unique solution k = K0(w) to the implicit condition

G0(k, w) := u′(w − k)− Eν [R(k, ·)v′(kR(k, ·))] = 0. (5)

Note that the implicit function theorem implies that K0 is C1, strictly increasing, and

0 < K0(w) < w for all w > 0. The capital process along the bubbleless ME evolves as

kt+1 = KE
0 (kt, θt) = K0 ◦W (kt, θt). (6)

Equation (6) is precisely the representation of equilibrium studied in Wang (1993). To

rule out degenerate cases in which capital converges to zero with positive probability, he

imposes the additional restriction limk↘0 ∂kK
E
0 (k, θmin) > 1, cf. Theorem 4.3 in Wang
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(1993). This condition ensures existence of a lower bound k > 0 such that KE(k, θ) > k

for all θ ∈ Θ whenever k ≤ k.1 For most of the following analysis, however, it suffices to

work with a weaker condition which only excludes that capital converges to zero with

probability one. Only later will the stronger requirement of Wang (1993) be necessary.

Before introducing such restrictions formally, a crucial observation is that the bubbleless

ME is fully described by the map K0 defined on the one-dimensional set W ⊂ R++ of

equilibrium wages. We will show in the next section that the same structure obtains

in the bubbly case and also along any ME of Ed, d > 0. In each case, the equilibrium

mappings in Definition 2 take the form PE
d = Pd ◦W and KE

d = Kd ◦W with Pd and

Kd defined on W. Thus, any ME is completely described by mappings defined on a

one-dimensional set W which we will refer to as the reduced state space. For this reason,

the pair (Pd, Kd) will also be referred to as a ME of Ed.

It will be convenient to impose restrictions on the reduced state space W rather than X
directly. For this reason, we state the aforementioned boundary properties in terms of

the wage process along the bubbleless equilibrium which evolves as

wt+1 = WE
0 (wt, θt+1) := W (K0(wt), θt+1). (7)

Mathematically, this representation of the equilibrium dynamics is equivalent to (6).

The following assumption rules out that the wage process (7) converges to zero with

probability one.

Assumption 3

The map WE
0 defined in (7) satisfies lim infw↘0W

E
0 (w, θmax)/w > 1.

Assumptions 1 and 3 together with continuity of WE
0 ensure that the set of fixed points

of WE
0 (·, θmax) is non-empty and compact. Thus, defining

wmax := min
{
w > 0

∣∣∣w = WE
0 (w, θmax)

}
(8)

allows us to use W :=]0, wmax] as the reduced state space. Note that W is self-supporting

in the sense that w ∈W implies WE
0 (w, θ) ∈W for all θ ∈ Θ. Further, WE

0 (·, θmax) has

wmax as its unique fixed point which is globally asymptotically stable on W.2

Setting kmax := K0(wmax) and K =]0, kmax] permits to define X := K×Θ as the natural

state space from Definition 2 along the bubbleless ME. In the next section, we show

that these choices for W and X extend to the bubbly case and any ME of Ed if d > 0.

Thus, a major advantage of Assumption 3 is that it permits a bounded state space.

1A similar restriction is employed in Hauenschild (2002) and others. Conditions on the primitives

under which these properties hold can be found in Galor & Ryder (1989) or, more recently, in Li & Lin

(2012).
2This uniqueness property will be important to obtain several results including Theorem 1. Other-

wise, we could have defined wmax in (8) to be the maximum fixed point of WE
0 (·, θmax).
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Some results of Section 3 will even require that W and X can be chosen compact along

the bubbleless ME. In such cases, the following stronger restriction is imposed which

rules out that the wage process (7) converges to zero even with positive probability.

Mathematically, this is equivalent to the condition in Wang (1993) discussed above.

Assumption 4

The map WE
0 defined in (7) satisfies lim infw↘0W

E
0 (w, θmin)/w > 1.

Assumption 4 permits to choose a value w > 0 such that WE
0 (w, θmin) > w for all w ≤ w.

Thus, WE
0 (·, θmin) has at least one positive fixed point. Defining

wmin := min
{
w > 0

∣∣∣w = WE
0 (w, θmin)

}
(9)

ensures that W := [wmin, wmax] is a compact self-supporting set for the dynamics (7).

While this would also permit to choose the state space X compact along the bubbleless

ME, these choices neither extend to the bubbly case nor to a ME of Ed if d > 0.

2 Constructing Markov Equilibria

The pointwise construction of ME employed in Wang (1993) and the previous section

is available only in the bubbleless case. For this reason, the following sections develop

a more general approach which is based on methods from functional analysis similar

to Morand & Reffett (2007). It is shown in Hillebrand (2014) that this approach is

equivalent to the pointwise construction in Wang (1993) in the bubbleless case. Our

method permits to construct ME of the general class of economies Ed, d ≥ 0 introduced

in the previous section. Identifying conditions under which the solution obtained for

d = 0 defines a bubbly ME of the benchmark economy E then becomes a separate issue

to be explored in Section 3.

The following sections throughout impose Assumptions 1, 2, and 3. Using the results

from Section 1.4, define wmax as in (8) and the reduced state space W =]0, wmax],

kmax := K0(wmax) by (5), K =]0, kmax], and the natural state space X = K×Θ.

2.1 Defining an operator Td

Given d ≥ 0, the following analysis aims to construct ME of Ed as fixed points of an

operator Td defined on some suitably chosen function space G . To restrict the class of

candidate equilibrium functions G , a first and crucial observation is that the current

state xt = (kt, θt) enters the Euler equations (3a,b) only through the wage wt = W (xt).
3

3This property rests crucially on the i.i.d. structure of the shock process. While this will simplify

the subsequent construction of ME considerably, we expect the underlying principle along with most of
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Therefore, we conjecture that, similar to the bubbleless equilibrium, the mappings from

Definition 2 can be written as KE
d = Kd ◦W and PE

d = Pd ◦W where Kd : W −→ K and

Pd : W −→ R+. Under this hypothesis, the problem of determining a ME is equivalent

to determining the two functions (Kd, Pd) consistent with the Euler equations (3a,b).

Moreover, we will show below that any solution Pd uniquely determines the associated

capital function Kd. Thus, we are essentially left to determine the function Pd. We

restrict our search for this solution to the function space

G :=

P : W −→ R+

∣∣∣∣∣∣
P is continuous

w 7→ P (w) is weakly increasing

w 7→ w − P (w) is weakly increasing

 . (10)

The space G is endowed with the usual pointwise ordering, i.e., P1 ≥ P2 (P1 > P2) iff

P1(w) ≥ P2(w) (P1(w) > P2(w)) for all w ∈W.

The previous insights greatly simplify the construction of ME because they permit

to reduce the problem of determining two functions (PE
d , K

E
d ) both defined on X to

finding a single function Pd defined on the one-dimensional space W. In the sequel we

will construct Pd as a fixed point of some operator Td defined on G . The additional

monotonicity restrictions in (10) will be necessary for this operator to be well-defined.

Let d ≥ 0 be arbitrary but fixed. The key ingredient to construct the operator Td are

the Euler equations (3a,b). The idea is as follows: At some fixed point in time, suppose

next period’s asset price is determined by some function P ∈ G of next period’s wage.

Then, for any current state w ∈ W, the current price p and capital investment k must

solve the Euler equations (3a,b). Given P ∈ G and some fixed w ∈W, let

H1(k, p;w,P, d) :=u′(w − p− k)

− Eν
[
R(k, ·)v′

(
P (W (k, ·)) + d+ kR(k, ·)

)] (11a)

H2(k, p;w,P, d) :=u′(w − p− k)p

− Eν
[
(P (W (k, ·)) + d)v′

(
P (W (k, ·)) + d+ kR(k, ·)

)] (11b)

which are defined for all 0 < k < kmax and p ≥ 0 such that k + p < w. Then, for any

fixed w̃ ∈W, the problem is to determine k̃ ∈ K, and p̃ ≥ 0 such that k̃ + p̃ < w̃ and

H1(k̃, p̃; w̃, P, d) = H2(k̃, p̃; w̃, P, d) = 0. (12)

First, consider the problem (12) for d = 0. For this case, we have the following result.

Lemma 2.1

In addition to Assumptions 1–3, let (T1) and (U1) be satisfied and suppose d = 0.

Then, for any P ∈ G and w̃ ∈W, there is a unique solution p̃ ≥ 0 and k̃ ∈ K to (12).

the results to carry over to more general classes of economies including correlated production shocks.

Clearly, in this case the function space G consists of mappings defined on X rather than W.
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Lemma 2.1 permits to define functions TP : W −→ R+ and KP : W −→ R++ which

determine the unique solution to (12) if d = 0, i.e., TP (w̃) := p̃ and KP (w̃) := k̃ for each

w̃ ∈ W. This induces an operator T on G which associates with any function P ∈ G

the new function T (P ) := TP . We also denote by K• the operator on G which assigns

to P ∈ G the function KP .4

The following result shows that T maps G into itself and establishes several additional

properties. Here, the additional restrictions (T2) and (U2) are needed to ensure that T

maps monotonic functions to monotonic functions.

Lemma 2.2

In addition to Assumptions 1–3, let (T1), (U1), and either (T2) or (U2) hold. Then

T : G −→ G . Further, for each P ∈ G the following holds:

(i) T (P ) < idW, P > 0 implies T (P ) > 0 while P = 0 implies T (P ) = 0.

(ii) KP is continuous and increasing, KP ≤ K0 < idW and P > 0 implies KP < K0.

In a second step, consider now the problem (12) for d > 0. Observe that this problem

is identical to the case where d = 0 if P is replaced by the function P̂ = P + d, i.e.,

P̂ (w) := P (w) + d for all w ∈W. Clearly, P ∈ G implies P + d ∈ G for all d ≥ 0. Thus,

define for each fixed d ≥ 0 the operator Td on G as

Td(P ) = T (P + d). (13)

Then, by Lemmata 2.1 and 2.2, for each P ∈ G , w̃ ∈ W and fixed d ≥ 0, the unique

solution to (12) is given by p̃ = TdP (w̃) and k̃ = KP+d(w̃). In particular, T0 = T . The

relation (13) shows that Td inherits all properties derived above for T . In particular, Td
maps G into itself and Td(P ) < idW for all P ∈ G .

2.2 Montonicity properties of Td

We conjecture – and prove in the next subsection – that a fixed point of Td, i.e., a

function P ∗d ∈ G such that P ∗d = TdP
∗
d together with the induced capital function

K∗d = KP ∗d+d define a ME of Ed. In this regard, the last result from Lemma 2.2 implies

K∗d ≤ K0 with the latter defined by (5). This property permits to employ W =]0, wmax]

as the reduced state space and X = K×Θ as the natural state space along any ME.

Our ultimate goal in this paper is to prove the existence of a BME which corresponds

to a non-trivial fixed point P ∗0 > 0 of T . Unfortunately, however, Lemma 2.2 already

showed that the trivial solution P = 0 is always a fixed point of T , so a mere existence

result will not help. Instead, we will explicitly construct fixed points as pointwise limits

4As KP yields the solution K0 defined by (5) for P ≡ 0, this notation is consistent with Section 1.4.
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of function sequences. The method is similar to the one developed in Greenwood &

Huffman (1995), see also Morand & Reffett (2003, 2007).

A key property for this construction to be successful is that Td be monotonic which, by

(13) is equivalent to monotonicity of T which we will consider first. A major obstacle

to establish this property globally on G is that the methods from differential calculus

including the implicit function theorem are not available for all functions in G . To rem-

edy this problem, we will temporarily restrict ourselves (respectively T ) to the smaller

set

G ′ := {P ∈ G |P is C1} (14)

of continuously differentiable functions in G . Observe that G ′ still contains the trivial

solution P ≡ 0. The next result shows that T maps G ′ into itself.

Lemma 2.3

Under the hypotheses of Lemma 2.2, P ∈ G ′ implies TP ∈ G ′.

The following result now establishes the monotonicity of T on G ′ which will turn out to

be sufficient to apply the construction principle below. In addition, we show that K• is

strictly decreasing on G ′ which resembles the usual crowding-out effect of assets.

Lemma 2.4

In addition to Assumptions 1–3, let (T1) and (U1) hold. Then, T is monotonically

increasing on G ′, i.e., for any P0, P1 ∈ G ′, P1 ≥ P0 implies T (P1) ≥ T (P0) and P1 > P0

implies T (P1) > T (P0). Moreover, K• is monotonically decreasing on G ′.

It follows directly from (13) that the operator Td inherits all previous properties from

T . In particular, Td is monotonic on G ′ and maps this subclass into itself. In addition,

the map d 7→ Td is monotonic in the sense that d1 ≥ d0 implies Td1P ≥ Td0P for all

P ∈ G ′. For later reference, we state these properties formally in the next result.

Corollary 2.1

Under the hypotheses of Lemma 2.4, Td satisfies the following monotonicity properties:

(i) For all d ∈ R+ and P0, P1 ∈ G ′: P1 ≥ (>)P0 implies TdP1 ≥ (>)TdP0.

(ii) For all P ∈ G ′ and d0, d1 ∈ R+: d1 ≥ (>)d0 implies Td1P ≥ (>)Td0P .

2.3 Constructing ME as fixed points of Td

Let d ≥ 0 be arbitrary but fixed. We are now in a position to construct ME of Ed as

fixed points of Td. For m ∈ N, let Tmd denote the m-fold composition of Td with itself,

i.e., Tmd = Td ◦ Tm−1
d . As TdP = T (P + d) < idW for all P ∈ G by Lemma 2.2, the

identity map idW ∈ G ′ defines a natural upper bound for any fixed point of Td. Thus,

11



define the sequence of functions (Pm
d )m≥0 recursively by setting P 0

d ≡ P0 := idW and

Pm
d := Td(P

m−1
d ) = Tmd P0. By Lemma 2.3, this sequence is well-defined and Pm

d ∈ G ′

for all m ≥ 0. Further, P 1
d < P 0

d implies Pm+1
d < Pm

d for all m ≥ 0 by monotonicity of

Td, i.e., (Pm
d )m≥0 is strictly decreasing. Thus, the pointwise limit

P ∗d (w) := lim
m→∞

Pm
d (w) = lim

m→∞
Tmd P0(w) (15)

is well-defined for all w ∈ W as (Pm
d (w))m≥0 is a strictly decreasing sequence bounded

by zero. We show that the limiting function satisfies P ∗d ∈ G . For each m ≥ 1, Pm
d ∈ G

implies that w 7→ Pm
d (w) and w 7→ w−Pm

d (w), w ∈W are both increasing. Thus, for any

0 < w1 < w2 ≤ wmax the inequalities Pm
d (w1) ≤ Pm

d (w2) and w1−Pm
d (w1) ≤ w2−Pm

d (w2)

being true for all m ≥ 1 also hold in the limit and imply that P ∗d inherits the previous

monotonicity properties. Using an argument developed and proved in Morand & Reffett

(2003, p.1369), these properties already imply continuity of P ∗d . Thus, P ∗d ∈ G . Note,

however, that we can not be certain that P ∗d ∈ G ′.

The previous findings lead to the following main result.

Theorem 1

In addition to Assumptions 1–3, let (T1), (U1), and either (T2) or (U2) hold. Then, for

each d ≥ 0 the functions P ∗d defined in (15) and K∗d := KP ∗d+d satisfy the following:

(i) P ∗d is a fixed point of Td which satisfies P ∗d > 0 for d > 0 and either P ∗0 > 0 or

P ∗0 = 0 if d = 0. Moreover, d > d′ ≥ 0 implies P ∗d ≥ P ∗d′ and K∗d < K∗d′ .

(ii) Both mappings P ∗d and K∗d are continuous and increasing.

(iii) KE
d := K∗d ◦W and PE

d := P ∗d ◦W is a ME of Ed on X = K×Θ.

For d = 0, the previous construction delivers a unique ME (K∗0 , P
∗
0 ) of E . Clearly, P ∗0 = 0

implies K∗0 = K0 defined by (5) which yields precisely the bubbleless equilibrium studied

in Section 1.4. The main question of this paper, however, is when does P ∗0 > 0 hold?

Before exploring this question in the next section, we present an alternative way to

construct the ME from Theorem 1 for the benchmark economy E . The proof of our

main existence result will be based on this construction. The idea is to obtain the ME

of E as the limit of ME of dividend economies Ed as d goes to zero. Formally, let (dn)n≥1

be a decreasing sequence of dividends such that dn ≥ 0 for all n and limn→∞ dn = 0. By

Theorem 1, for each n ≥ 1 the functions P ∗dn defined by (15) and K∗dn = KP ∗dn+dn define

a ME of Edn . The following result shows that the sequence of ME constructed in this

fashion indeed converges (pointwise) to the ME of E defined by Theorem 1.

Lemma 2.5

For any positive dividend sequence (dn)n≥1 converging monotonically to zero, the in-

duced sequence of ME (K∗dn , P
∗
dn

)n≥1 from Theorem 1 converges pointwise to (K∗0 , P
∗
0 ).

12



3 Existence of Bubbly Markov Equilibria

In this section we establish necessary and sufficient conditions under which the ME

(K∗0 , P
∗
0 ) constructed in Theorem 1 is bubbly, i.e., P ∗0 > 0. Our main result stated as

Theorem 2 below shows that this is the case whenever the bubbleless equilibrium derived

in Section 1.4 is Pareto inefficient. As the proof requires that the (reduced) state space

can be chosen compact along this equilibrium, the following sections replace our previous

Assumption 3 by the stronger Assumption 4. In addition, the formal arguments in the

proofs of Lemma 3.1 and Theorem 2 below assume that the shock space Θ is finite

without explicit notice. These restrictions allow us to easily use the characterization of

Pareto-inefficiency along with Proposition 4 from Barbie, Hagedorn & Kaul (2007). An

extension to the case where Θ is an interval seems straightforward (but tedious) along

the lines of Proposition 1 in Barbie & Kaul (2015). All other arguments and proofs in

this section are formulated and hold for the general case where Θ is an interval.

In the following analysis, define wmax by (8) and wmin by (9). As a notational convention,

a superscript ∗ identifies functions associated with the ME constructed in Theorem 1.

3.1 Pareto optimality

Our concept of Pareto optimality corresponds to Interim Pareto Optimality (IPO) as

defined and studied, e.g., in Demange & Laroque (2000) or Conditional Pareto Optimal-

ity (CPO) as in Chattopadhyay & Gottardi (1999). The following definition formalizes

this concept for the class of economies Ed defined above for a fixed value d ≥ 0.

Definition 4

(i) Given x0 = (k0, θ0) ∈ X, a feasible allocation of Ed is an adapted stochastic process

a = {kt+1, c
y
t , c

o
t}t≥0 with values in R3

+ which satisfies the resource constraint

kt+1 + cyt + cot = f(kt, θt) + d

for all t ≥ 0. The set of feasible allocations of Ed is denoted Ad(x0).

(ii) Allocation a ∈ Ad(x0) (Pareto) dominates allocation ã ∈ Ad(x0) if co0 ≥ c̃o0 and

ut := Et
[
u(cyt ) + v(cot+1)

]
≥ Et

[
u(c̃yt ) + v(c̃ot+1)

]
=: ũt

for all t ≥ 0 and for some t ≥ 0 there exists a non-empty set A ∈ Ft such that

ut(ω) > ũt(ω) for all ω ∈ A.

(iii) Allocation a ∈ Ad(x0) is called Pareto optimal or efficient if it is not dominated

by any other allocation in Ad(x0). Otherwise, it is called inefficient.

Our main result in Theorem 2 below establishes that the benchmark economy E = E0

has a BME whenever the bubbleless equilibrium allocation is Pareto inefficient. To state

this result formally, we introduce the concept of a Markovian equilibrium allocation.

13



3.2 Markovian equilibrum allocations (MEA)

For fixed d ≥ 0, identify a ME of Ed with the mappings (K,P ) on W =]0, wmax] con-

structed as in the previous sections (here and in the sequel we drop the subscript d when

convenient). We seek to derive the induced mappings which determine the consumption

process along a ME. It will be convenient to define these mappings on the reduced state

space W rather than X and to identify the state at time t by wt. For this reason, we

fix the realization of the initial shock θ0 ∈ Θ5 and define the consumption mappings

associated with a ME (K,P ) as

Cy : W −→ R++, Cy(w) := w −K(w)− P (w)

Co : W×Θ −→ R++, Co(w, θ) := P (W (K(w), θ)) + d+K(w)R(K(w), θ).
(16)

We call the triple A = (K,Cy, Co) a Markovian Equilibrium Allocation (MEA). The

pricing kernel associated with A is defined as the map mA : W×Θ −→ R++,

mA(w, θ) :=
v′(Co(w, θ))

u′(Cy(w))
. (17)

For each w0 ∈W, a MEA determines a unique feasible allocation aE(w0) ∈ Ad(x0) where

kt+1 = K(wt), c
y
t = Cy(wt), c

o
t+1 = Co(wt, θt+1) = Co(wt, wt+1/W (K(wt), 1) for t ≥ 0

while old-age consumption co0 in t = 0 follows from the aggregate resource constraint.

Consequently, we adopt the following notions of efficiency/inefficiency for MEA.

Definition 5

A MEA A = (K,Cy, Co) is called

(i) efficient/inefficient at w0 ∈W if aE(w0) is efficient/inefficient.

(ii) efficient/inefficient on W ⊂W if A is efficient/inefficient at all w0 ∈W.

(iii) efficient/inefficient if it is efficient/inefficient at each w0 ∈W.6

The previous formulation permits consumption and capital along the ME to be expressed

as functions of the (reduced) state process {wt}t≥0. Given w0 ∈ W, the statistical

evolution of this process is determined by a time-invariant transition probability Q (see

Appendix B for details). Therefore, the lifetime utility ut of generation t from Definition

4 (ii) also depends exclusively on the state wt. Combining results from Barbie, Hagedorn

& Kaul (2007) and Barbie & Kaul (2015), these properties will allow us to characterize

5This restriction is necessary because initial old-age consumption co0 can, in general, not be written

as a function of w0 but requires knowledge of the full initial state x0. If θ0 is fixed, there is a one-to

one correspondence between w0 and the initial state x0 and the process {xt}t≥0 can fully be recovered

from {wt}t≥0 as kt = K(wt−1) and θt = wt/W (kt, 1) for t ≥ 1.
6Under the additional restrictions from Lemma 3.1 (ii) below, the efficiency properties of A become

to some extent independent of the initial state w0.

14



the (in-)efficiency of MEA in terms of mappings defined on a one-dimensional state space

which greatly simplifies this characterization. To obtain these results, the following

additional restrictions on MEA will be employed.

Definition 6

Let A = (K,Cy, C0) be a MEA defined as above.

(i) We call A continuous if the mappings K, Cy, and Co are all continuous.

(ii) We call a subset of the form W = [w,wmax] ⊂ W a stable set and w > 0 a lower

bound (of A) if w ∈W implies W (K(w), θ) ∈W for all θ ∈ Θ.

(iii) We call A bounded, if for each w0 ∈W there is some stable set W containing w0.

For each d ≥ 0, denote by A∗d = (K∗d , C
y,∗
d , Co∗

d ) the MEA associated with the ME

(K∗d , P
∗
d ) from Theorem 1. Further, let A0 = (K0, C

y
0 , C

o
0) be the MEA associated

with the bubbleless ME of E derived in Section 1.4. That is, K0 is defined by (5),

Cy
0 (w) := w − K0(w), and Co

0(w, θ) := K0(w)R(K0(w), θ) for all w ∈ W and θ ∈ Θ.

Note that A∗0 coincides with A0 if and only if (K∗0 , P
∗
0 ) is bubbleless, i.e., P ∗0 = 0. This

observation will play a key role in the next section. Also observe that A0 and each

A∗d are continuous by the results from Section 1.4 and Theorem 1 (ii) and that A0 is

bounded under the additional restriction from Assumption 4.

3.3 A general existence theorem

We are now in a position to state our main existence result in the following theorem.

Theorem 2

In addition to Assumptions 1, 2, and 4, let (U1), (T1), and either (U2) or (T2) hold. If

A0 is inefficient, then (K∗0 , P
∗
0 ) defines a BME of E , i.e., P ∗0 > 0.

The intuition behind the proof of Theorem 2 is straightforward. Consider a monotonic

sequence of strictly positive dividend payments (dn)n≥1 which converges to zero. For

each n ≥ 1, construct the ME (K∗dn , P
∗
dn

) of Edn as in Theorem 1 and denote by A∗dn the

induced MEA defined as above. It is well-known that each A∗dn , being an equilibrium

allocation of an economy with a dividend-paying asset, is efficient. Intuitively, one would

expect that this efficiency also holds in the limit such that the sequence (A∗dn)n≥1 can

not converge to A0 if A0 is inefficient. Thus, A0 6= A∗0 which is only possible if P ∗0 > 0,

i.e., (K∗0 , P
∗
0 ) is bubbly.7

7The same argument is used in Barbie & Kaul (2015), going back to the basic idea in Aiyagari &

Peled (1991), for the case of an exchange economy, where instead of the monotonicity methods applied

here Schauder’s fixed point theorem is used. Since in our framework in addition the capital stock

adjusts as an endogenous variable, the analysis becomes more complicated than under pure exchange.
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We preface the proof of Theorem 2 by the following three lemmata. The first result is

a sort of unit root condition, which is used in OLG models with finitely many states

to characterize the Pareto optimality of stationary competitive equilibria. The proof is

an adaption of the results from Barbie, Hagedorn & Kaul (2007) and Barbie & Kaul

(2015) and is relegated to Appendix B. Note the similarity of (18) to the conditions for

inefficiency in Demange & Laroque (2000) or Magill & Quinzii (2003).

Lemma 3.1

Let A = (K,Cy, Co) be a MEA which is continuous and bounded.

(i) If A is inefficient, there is an upper-semi-continuous function η : W −→]0, 1] such

that

Eν [η(W (K(w), ·))mA(w, ·)] > η(w) for all w ∈W. (18)

(ii) If mA in (17) is increasing, then η in (i) can be chosen continuous. Moreover, if A

is inefficient at some w0 ∈W, it is also inefficient for all w′0 ≥ w0.

Let m0 := mA0 be the pricing kernel associated with the bubbleless allocation A0. Our

next result ensures that η in (18) can be chosen continuous whenever A0 is inefficient.

Lemma 3.2

If Assumptions 1–3, (T1), (U1), and either (T2) or (U2) hold, then m0 is increasing.

Finally, we have the following sufficient condition for inefficiency. This condition also

appears as part of Theorem 1 of Barbie & Kaul (2015) and as Theorem 1 in Demange

& Laroque (2000). The proof we give here is similar to the ones given in these papers.

Lemma 3.3

Let A = (K,Cy, Co) be continuous and W be a stable set of A. If a continuous function

η : W −→]0, 1] satisfies (18) for all w ∈W, then A is inefficient on W.

We are now in a position to prove Theorem 2 in five steps.

Step 1: Let w0 ∈ W be arbitrary and W = WA0 = [w,wmax] be a stable set of A0

containing w0 such that W (K0(w), θmin)/w > 1. Assumption 4 ensures that such a set

exists. By hypothesis, A0 is inefficient at w0. Thus, invoking Lemmata 3.1 and 3.2,

there exists a continuous function η : W→]0, 1] such that for all w ∈W:

Eν
[
η(W (K0(w), ·))m0(w, ·)

]
> η(w). (19)

Step 2: Define the sequence (dn)n≥1 as dn := d̄/n for n ≥ 1 with d̄ > 0 specified

below. For each n ≥ 1, let (K∗dn , P
∗
dn

) be the ME of Edn from Theorem 1 and define the

induced MEA A∗dn = (K∗dn , C
y∗
dn
, Co∗

dn
) as in Section 3.2. By Lemma 2.5, the sequence

(K∗dn , P
∗
dn

)n≥1 converges pointwise to the ME (K∗0 , P
∗
0 ) of E which satisfies either P ∗0 = 0

or P ∗0 > 0. We will show that the first case is impossible under the hypotheses of
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the theorem. Thus, with the aim of obtaining a contradiction, the remainder assumes

P ∗0 = 0 which implies K∗0 = K0. Then, the sequence (A∗dn)n≥1 converges pointwise

to A0 = (K0, C
y
0 , C

o
0) defined above. Further, the sequence (mn)n≥1 of pricing kernels

mn := mA∗dn
associated with A∗dn defined in (17) converges pointwise to m0 = mA0 .

Step 3: We choose d̄ > 0 such that W = [w,wmax] is stable for each A∗dn . Since (K∗dn)n≥1

is increasing by Theorem 1 (i), it suffices to specify d̄ such that W is stable for A∗d1 . As

δ := W (K0(w), θmin)/w > 1 and K∗d1 = K∗
d̄

converges pointwise to K0 for d̄↘ 0 due to

Lemma 2.5, choosing d̄ > 0 small ensures W (K∗
d̄
(w), θmin)/w > 1. Then, w ≥ w implies

W (K∗dn(w), θ) ≥ W (K∗d1(w), θmin) ≥ W (K∗d1(w), θmin) > w, i.e., W is stable for A∗dn .

Step 4: Standard arguments imply that each A∗dn is efficient on W. To see this, define for

n ≥ 1 the continuous function R∗n(w, θ) := (P ∗dn(W (K∗dn(w), θ)) +dn)/P ∗dn(w) which sat-

isfies Eν [mn(w, ·)R∗n(w, ·)] = 1 for all w ∈W. Thus, R∗n is a return in the sense of Barbie,

Hagedorn & Kaul (2007), cf. their equation (5). For all T > 0 and w0 ∈W, monotonic-

ity of P ∗dn implies ΠT
t=1R

∗
n(wt−1, θt) ≥ P ∗dn(wT )/P ∗dn(w0) ≥ P ∗dn(w)/P ∗dn(wmax) =: M for

any realization of shocks θ1, . . . , θT where wt = W (K∗dn(wt−1), θt). Note that M is in-

dependent of T and the shocks. Using Proposition 4(a) in Barbie, Hagedorn & Kaul

(2007), this implies that A∗dn is interim Pareto efficient on W.8

Step 5: Combining the previous result with Lemma 3.3 shows that for each n ≥ 1 there

exists some wn ∈W such that

Eν
[
η(W (K∗dn(wn), ·))mn(wn, ·)

]
≤ η(wn). (20)

Since W is compact, the sequence (wn)n≥1 contains a subsequence converging to some

w∗ ∈ W. Denote this sequence again by (wn)n≥1. Clearly, limn→∞ η(wn) = η(w∗) by

continuity of η. We would like to show that for all θ ∈ Θ

lim
n→∞

η(W (K∗dn(wn), θ))mn(wn, θ) = η(W (K0(w∗), θ))m0(w∗, θ). (21)

Since all functions in (21) are continuous, it suffices to show that limn→∞ P
∗
dn

(wn) = 0

and limn→∞K
∗
dn

(wn) = K0(w∗). We have that limn→∞ sup{P ∗dn(w) |w ∈ W} = 0 by

Theorem A in Buchanan & Hildebrandt (1908)9, which immediately gives the result for

P ∗dn . Also by Theorem A in Buchanan & Hildebrandt (1908), (K∗dn)n≥1 being a sequence

of strictly monotonic functions converges uniformly to K0 on the compact interval W.

Combined with continuity of K0, for any δ > 0 there exists n0 such that n > n0 implies

|K∗dn(wn)−K0(w∗)| ≤ |K∗dn(wn)−K0(wn)|+ |K0(wn)−K0(w∗)| < δ.

8The result that economies with a dividend paying asset have efficient equilibria is well-known and

can also by proved by defining state contingent claims prices and showing that the value of the aggregate

endowment is finite (due to the presence of dividends). Efficiency of the equilibrium allocation then

follows along the lines of the standard proof of the first welfare theorem.
9Their result states the simple, but in our analysis very useful fact that if a sequence of monotonic

real-valued functions fn defined on the interval [a, b] with a < b converges pointwise to a continuous

function f on [a, b], then f is also monotonic and convergence is uniform.
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This proves (21). Further, η is bounded as a continuous function on the compact set W
while 0 < mn(wn, θ) < v′(Kd̄(w)R(Kd̄(w), θmin))/u′(wmax) for each θ ∈ Θ. Thus, by the

Lebesgue-dominated convergence theorem, (20) and (21) imply

Eν
[
η(W (K0(w∗), ·))m0(w∗, ·)

]
≤ η(w∗). (22)

But this contradicts (19) and proves the claim that P ∗0 > 0. �

The previous construction also suggests that the limiting MEA A∗0 associated with the

BME (K∗0 , P
∗
0 ) is efficient. Clearly, if A∗0 is bounded, this follows immediately from

the same arguments used in Step 4. Unfortunately, however, boundedness of A∗0 is not

guaranteed even if the bubbleless equilibrium satisfies Assumption 4.

Under the hypotheses of Theorem 2, suppose the shock process is non-degenerate, i.e.,

θmin < θmax or, equivalently, wmin < wmax defined by (8) and (9). Then, for any initial

value w0 ∈W, the dynamics (7) takes values in the ergodic set [wmin, wmax] after finitely

many periods with positive probability. In this case, global inefficiency of A0 is equivalent

to inefficiency on the ergodic set which, by Lemma 3.1 (ii) and 3.2 is equivalent to A0

being inefficient at wmin. Thus, we obtain the following existence result as a corollary

to Theorem 2.

Corollary 3.1

In addition to Assumptions 1, 2, and 4, let (U1), (T1), and either (U2) or (T2) hold. If

wmin < wmax and A0 is inefficient at wmin, then (K∗0 , P
∗
0 ) is a BME of E , i.e., P ∗0 > 0.

3.4 Conditions for inefficiency of A0

In this section we provide necessary and sufficient conditions for A0 to be inefficient as

required in Theorem 1 which are simple and easy to verify. As in the previous section,

we impose the stronger Assumption 4 and define wmax by (8) and wmin by (9).

Define the bubbleless MEA A0 = (K0, C
y
0 , C

o
0) as before. The pricing kernel m0 = mA0

defined in (17) induces a map M : W −→ R++,

M(w) := Eν
[
m0(w, ·)

]
. (23)

Economically, the value 1/M(w) can be interpreted as the riskless return in state w ∈W.

Using (5) and the definition (17) of m0, M can equivalently be written as

M(w) =
Eν [v′(Co

0(w, ·))]
Eν [R(K0(w), ·)v′(Co

0(w, ·))]
, w ∈W. (24)

The representation in (24) reveals directly that M is continuously differentiable and

satisfies 0 ≤M(w) ≤ 1/R(K0(w); θmin) for all w. The latter implies limw↘0M(w) = 0.

Our first result states a simple sufficient condition under which A0 is inefficient. Note

that the additional restrictions (T2) or (U2) are not required here.
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Lemma 3.4

Let Assumptions 1, 2, 4, and (T1) and (U1) hold and define M as in (23). If M(w) > 1

for all w ∈ [wmin, wmax], then A0 is inefficient.

Proof: We construct a continuous function η :]0, wmax] −→ R++ which satisfies (19) for

all w ∈ W. By Lemma 3.3, this implies inefficiency of A0 on any stable set [w,wmax]

which implies inefficiency on W.

Defining WE
0 as in (7), note that WE

0 (·; θmin) is strictly increasing and, therefore, invert-

ible on its range. Denote the inverse by Λ. By continuity of M , there exists δ > 0 such

that M(w) > 1 for all w ∈ [wmin − δ, wmax]. Construct a sequence (wn)n≥0 by setting

w0 := wmin − δ and wn := Λ(wn−1) = Λn(w0) for n ≥ 1. Note that (wn)n≥0 is strictly

decreasing and, due to Assumption 4, converges to zero.

Now construct η as follows. For w ∈ [w0, wmax], let η(w) ≡ 1. Then,

Eν
[
η(WE

0 (w, ·))m0(w, ·)
]

= M(w) > 1 = η(w)

for all w ∈ [w0, wmax]. Second, for w ∈ [w1, w0[ let η(w) := M(w)/M(w0). Then,

Eν
[
η(WE

0 (w, ·))m0(w, ·)
]

= M(w) > M(w)/M(w0) = η(w)

for all w ∈ [w1, w0[. Now proceed inductively for n ≥ 1 by defining for w ∈ [wn, wn−1[

η(w) := Eν
[
η(WE

0 (w, ·))m0(w, ·)
]
/M(w0).

By construction, η is a continuous function which satisfies (19). Since [w0, wmax] ∪
(∪n≥1[wn, wn−1[) =]0, wmax] the previous construction covers the entire interval W. �

A partial converse to Lemma 3.4 is the following result.

Lemma 3.5

Let Assumptions 1, 2, 4, and (T1) and (U1) hold. If A0 is inefficient, then M(w) > 1

for at least one w ∈ [wmin, wmax].

Proof: By contradiction, suppose A0 is inefficient but M(w) ≤ 1 for all w ∈ [wmin, wmax].

By Lemma 3.1, there is an upper-semi-continuous function η : W −→ R++ such that

Eν
[
η(WE

0 (w, ·))m0(w, ·)
]
> η(w).

for all w ∈ [wmin, wmax]. By Theorem 2.43 in Aliprantis & Border (2007, p.44), η

attains a maximum on any compact set and the set of maximizers is compact. Letting

w∗ ∈ [wmin, wmax] be a value for which η(w∗) = ηmax := max{η(w) |w ∈ [wmin, wmax]},

Eν
[
η(WE

0 (w∗, ·))m0(w∗, ·)
]
≤ ηmaxEν

[
m0(w∗, ·)

]
= ηmaxM(w∗) ≤ ηmax = η(w∗)

which is a contradiction. �

The previous conditions take an even simpler form under the additional restrictions (T2)

or (U2). In this case, monotonicity of m0 due to Lemma 3.2 implies that M is strictly

increasing. Combining Lemmata 3.4 and 3.5 then leads to the following main result.
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Theorem 3

In addition to Assumptions 1, 2, and 4, let (T1), (U1), and either (T2) or (U2) hold.

(i) If M(wmin) > 1, then A0 is inefficient.

(ii) If A0 is inefficient, then M(wmax) > 1.

In the deterministic case where wmin = wmax, the two conditions from Theorem 3 reduce

to M(wmin) > 1 which is equivalent to a capital return R < 1 at the bubbleless steady

state. This is precisely the condition in Tirole (1985) which is sufficient and necessary

in the deterministic case. In the present stochastic case, the condition M > 1 requires

an ’average’ capital return less than unity on the ergodic set [wmin, wmax].

3.5 An example economy

The following example illustrates the construction of ME of E developed in Section 2

and the previous conditions under which the ME is bubbly. We also demonstrate that

the condition M(wmin) > 1 from Theorem 3 is not necessary for a BME to exist.

Suppose f(k) = kα, 0 < α < 1, u(c) = log(c), and v(c) = βu(c), β > 0. This

parametrization is widely studied in the literature, cf. Michel & Wigniolle (2003) or

Demange & Laroque (2000). Rangazas & Russell (2005) provide a detailed discussion

of the (dynamic) efficiency properties of the bubbleless equilibrium allocation.

One verifies directly that Assumptions 1 and 2 and the additional restrictions (T1),

(U1), and (U2) hold. Moreover, the mapping K0 associated with the bubbleless ME of

E defined by (5) computes K0(w) = β
1+β

w such that WE
0 defined in (7) takes the form

WE
0 (w, θ) = θ(1− α)

(
β

1 + β
w

)α
. (25)

Direct computations reveal that WE
0 (·, θmax) has a unique non-trivial fixed point given

by wmax = [(1 − α)θmax (β/(1 + β))α]
1

1−α which is stable. Further, WE
0 (·, θmin) also has

a unique fixed point wmin = [(1−α)θmin (β/(1 + β))α]
1

1−α and Assumption 4 is satisfied.

For later reference, let kmax := K0(wmax) denote the maximum capital stock and Rmax :=

R(kmax, θmax) the associated maximum capital return. These values compute explicitly

as kmax = [ β
1+β

(1− α)θmax]
1

1−α and Rmax = 1+β
β

α
1−α .

Applying the construction principle from Section 2.3, let P0 = idW and consider the

sequence (Pn)n≥0 defined as Pn = T (Pn−1), n ≥ 1. As P (w) = δw implies TP (w) =

[Rmax + δ 1+β
β

]−1P (w) for w ∈ W, the operator T maps linear functions onto linear

functions. Thus, each Pn is linear and can be computed explicitly as

Pn(w) =
w

Rn
max + 1+β

β

∑n−1
m=0 R

m
max

, n ≥ 0.
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For each w ∈W, the limit P ∗0 defined in (15) is given by

P ∗0 (w) =

{
( β

1+β
− α

1−α)w if Rmax < 1

0 otherwise.
(26)

Thus, in this example, the ME constructed is bubbly, if and only if Rmax < 1 which

is equivalent to A0 being Pareto inefficient. To relate this result to the condition in

Theorem 3 (ii), consider the function M defined in (24) which can be computed as

M(w) = Eν [(R(K0(w), ·))−1]. (27)

One verifies by direct computations that in this case, M(wmax) = 1
Rmax

Eν [θmax/(·)] and

M(wmin) = 1
Rmax

Eν [θmin/(·)]. As Eν [θmax/(·)] > 1, Rmax < 1 implies M(wmax) > 1. On

the other hand, one can easily choose a distribution ν such that Eν [θmin/(·)] < Rmax < 1.

In this case, the fixed point in (26) satisfies P ∗0 > 0 and E has a BME even though

M(wmin) < 1.

In the previous example, the ME defined by (15) is bubbly, if and only if Rmax < 1. We

remark that the same condition can be used to ensure existence of a BME in the more

general case where (U1) holds and both u and v display constant relative risk aversion

(of the same degree) while f satisfies the restriction (T1’) Ef +Ef ′ ≤ 1 which is slightly

stronger than (T1) but also holds in the Cobb-Douglas case. Again, Assumptions 1-4

are all satisfied for this example. The condition R(kmax; θmax) < 1 now ensures existence

of a linear function P (w) = δw, w ∈ W, 0 < δ < 1 which is a lower bound for T in

the sense that TP > P .10 By the monotonicity properties of T , the fixed point in (15)

satisfies P ∗0 > P > 0 and, therefore, defines a BME. While sufficient, it is not clear

whether Rmax < 1 is also necessary for a BME to exist in this more general case and

whether Rmax < 1 is sufficient in more general cases. We suspect that, in general, a

characterization of inefficiency simpler than the one in Lemma 3.1 is not available.

3.6 Dynamics along a BME

Suppose the ME (K∗0 , P
∗
0 ) of E constructed in Theorem 1 is bubbly, i.e., P ∗0 > 0. We

seek to deduce several qualitative properties of the equilibrium dynamics along a BME.

Given the initial state x0 = (k0, θ0) ∈ X, all equilibrium variables can be expressed as

continuous functions of the equilibrium wage process {wt}t≥0 which evolves as

wt+1 = WE(wt, θt+1) := W (K∗0(wt), θt+1). (28)

It will again be convenient to study (28) rather than the mathematically equivalent

capital dynamics generated by KE = K∗0 ◦W .

10The proof of this result is straightforward but rather tedious and, therefore, omitted. It is available

from the authors upon request.
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As P ∗0 > 0 implies K∗0 < K0, a first observation is that WE < WE
0 where the latter is

defined in (7). Thus, the sequence generated by (28) is bounded by the wage process

(7) along the bubbleless equilibrium under any path of the shock process {θt}t≥0.

A second observation that follows from the Euler equations (3a,b) is that in each period

the return on the bubbly asset must (weakly) exceed the capital return (1b) in at least

one future state. Thus, for each w ∈W there exists some θ′ ∈ Θ such that

P ∗0 (WE(w, θ′))

P ∗0 (w)
≥ R(K∗0(w), θ′). (29)

As limw→0R(K∗0(w), θ′) = ∞ for all θ′ ∈ Θ and the left side in (29) is increasing

in the shock, there exists a lower bound w′ > 0 such that R(K∗0(w), θmin) > 1 and

P ∗0 (WE(w, θmax)) > P ∗0 (w) for all w ≤ w′. Thus, by monotonicity of P ∗0

WE(w, θmax) > w (30)

for all w ≤ w′. As WE(wmax, θmax) < WE
0 (wmax, θmax) = wmax, (30) also shows that

WE(·, θmax) has at least one stable fixed point which lies in the interval ]w′, wmax[. In

fact, since θmax belongs to the support of ν, (30) and continuity of WE imply that for

each w ≤ w′ there exists a measurable set Θw ⊂ Θ of positive measure ν(Θw) > 0 such

that WE(w, θ) > w holds for all θ ∈ Θw. Thus, defining p∗ := P ∗0 (w′), one observes that

the bubbly asset price process {pt}t≥0 along the BME is persistent in the sense that

whenever pt < p∗ there is a positive probability that pt+n > p∗ for some finite n ≥ 1.

An open question is whether this last result can be strengthened in the sense that pt < p∗

implies pt+n > p∗ for some finite n ≥ 1 with probability one. Essentially, this holds when

the wage dynamics (28) admits a uniform lower bound w′ > 0 such that WE(w, θ) > w

for all θ ∈ Θ whenever w ≤ w′. The example from Section 3.5 satisfies this condition.

If such a lower bound exists, the bubble price processes and in fact all equilibrium

variables remain bounded away from zero with probability one. Clearly, Assumption 4

is a necessary precondition for this to hold, but is it sufficient? This question becomes

particularly relevant for studying the existence of stationary distributions associated

with the state process defined by (28) which we leave for future research.

4 Conclusions

This paper developed a general approach to construct potentially bubbly Markov equi-

libria for a general class of frictionless OLG economies with stochastic production. Our

main result shows that a BME exists whenever the bubbleless equilibrium is inefficient.

This type of inefficiency can be the result of an overaccumulation of capital but also due

to inefficient risk sharing between consumers. The deterministic result of Tirole (1985)

therefore constitutes a special case of our existence theorem.
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To focus on this existence result and keep the technical part bearable, we deliberately

limited the underlying class of economies to a setup with i.i.d. TFP shocks and additive

consumer utility. We believe that these restrictions are inessential and easy to dispense

with at a cost of a more complex structure and notation. Potential extensions of the

previous framework include non-additive consumer utility, non-multiplicative and cor-

related production shocks, and non-classical production technologies. These extensions

were employed, e.g., in Wang (1994), Morand & Reffett (2007), McGovern, Morand

& Reffett (2013), or Hillebrand (2014) to study the existence and properties of bub-

bleless ME. Since all these papers rely on methods similar to those employed in this

paper, we believe that the previous construction of a BME should be amendable to

these extensions. This constitutes a first major objective of future research.

In addition, several issues remain to be studied even within the framework of this paper.

For instance, an open question is if the bubbly equilibrium is always efficient and,

related to that, whether it constitutes a Pareto improvement relative to the bubbleless

equilibrium. The characterization of Pareto optimality developed in Section 3 should be

key to answer these questions. Another avenue of future research is whether the state

dynamics along the BME converge to a stationary distribution on the endogenous state

space. Since our equilibrium mappings are all monotonic, we view the recent results of

Kamihigashi & Stachurski (2014) as tailor-made for studying the existence, uniqueness,

and stability of stationary distributions along a BME.

A Mathematical Appendix

A.1 Proof of Lemma 2.1

(i) Let P ∈ G be given and w ∈ W be arbitrary but fixed. For each k ∈ K =]0, kmax]

and θ ∈ Θ, set c(k, θ) := P (W (k, θ)) + kR(k, θ) which is a strictly increasing function

due to monotonicity of P and (T1). For k ∈ K, define the functions

P̃ (k) :=
Eν
[
P (W (k, ·))v′

(
c(k, ·)

)]
Eν
[
R(k, ·)v′

(
c(k, ·)

)] (A.1)

and

S(k) := k + P̃ (k) =
Eν
[
c(k, ·)v′

(
c(k, ·)

)]
Eν
[
R(k, ·)v′

(
c(k, ·)

)] =:
Ñ(k)

D(k)
. (A.2)

Since P is continuous, so are the mappings P̃ , Ñ , D, and S. Observe that Ñ in (A.2) is

weakly increasing due to (U1) and monotonicity of c(·, θ) while D is strictly decreasing

which implies that S is strictly increasing. Furthermore, by the boundary conditions

imposed in Assumptions 1 and 2

lim
k→0

D(k) =∞ (A.3)
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which, together with the monotonicity of Ñ implies

0 ≤ lim
k→0

P̃ (k) ≤ lim
k→0

S(k) = lim
k→0

Ñ(k)

D(k)
= 0. (A.4)

For k ∈ K, define

G(k;w) := u′(w − S(k))−D(k). (A.5)

Then, the desired solution k̃ solves G(k̃;w) = 0. Observe that G(·;w) is a strictly

increasing function which follows from the monotonicity of S and D and u′. Thus, any

zero is necessarily unique. Also observe the boundary behavior limk→0G(k;w) = −∞
due to (A.3). By continuity, it suffices to find a k < w such that G(k;w) ≥ 0. Suppose

P ≡ 0. Then the solution is k̃ = k0 := K0(w) defined by (5) and p̃ = 0. If P 6= 0,

consider the following two cases. First, S(k0) ≥ w. Then, by (A.4) and monotonicity

and continuity of S, there exists a unique value 0 < k̂ ≤ k0 such that S(k̂) = w which

implies limk↗k̂G(k;w) = ∞. Second, suppose S(k0) < w. Then, limk↗k0 G(k;w) =

u′(w − S(k0)) − D(k0) ≥ G0(k0;w) = 0 with G0 defined by (5). Thus, in either case,

there exists a solution 0 < k̃ ≤ k0 < w. Setting p̃ = P̃ (k̃) completes the proof. �

A.2 Proof of Lemma 2.2

Let P ∈ G be arbitrary. As shown in the previous proof, TP = P̃ ◦ KP where P̃ is

defined in (A.1) and, for w ∈ W, k = KP (w) is the unique solution to G(k;w) = 0

defined in (A.5). Clearly, KP is continuous. Note from (A.1) that TP ≥ 0, P > 0

implies TP > 0 and P = 0 implies TP = 0. As G in (A.5) is increasing in P and

P̃ , KP ≤ K0 for all P with strict inequality if P > 0. By definition of KP and (A.5),

w > S(KP (w)) > P̃ (KP (w)) = TP (w) for w ∈W which proves TP < idW.

To show that w 7→ w − TP (w) is (even strictly) increasing, let w ∈ W be arbitrary

and choose ∆ > 0 such that w + ∆ ∈ W. We show that TP (w + ∆) < TP (w) + ∆.

By contradiction, suppose TP (w + ∆) ≥ TP (w) + ∆. Note that G defined in (A.5) is

strictly decreasing in w and strictly increasing in k by strict monotonicity of D and S.

These properties imply that KP is strictly increasing which gives KP (w+ ∆) > KP (w).

Further, as shown in the previous proof, the function D defined in (A.2) is strictly

decreasing which gives D(KP (w + ∆)) < D(KP (w)). But by (A.5) and our hypothesis

D(KP (w + ∆)) = u′(w + ∆− TP (w + ∆)−KP (w + ∆))

≥ u′(w − TP (w)−KP (w + ∆))

> u′(w − TP (w)−KP (w))

= D(KP (w))

which is a contradiction and proves that w 7→ w − TP (w) is increasing.

Next, we show that TP is increasing. As TP = P̃ ◦KP and we have already shown that
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KP is strictly increasing, it remains to show that P̃ defined in (A.1) is increasing as well.

To avoid trivialities, assume in the remainder that P > 0. Adjusting the arguments to

the case where P ≥ 0 is straightforward. Let k ∈ K and ∆ > 0 be arbitrary such that

k + ∆ ∈ K. We show that P̃ (k + ∆) ≥ P̃ (k). By (U1), the map a 7→ av′(a + b), a > 0

is increasing for any b ≥ 0. Using this and monotonicity of P ◦W and v′ in (A.1) gives

P̃ (k + ∆) ≥ V (∆) :=
Eν
[
P (k, ·)v′

(
P (k, ·) + (k + ∆)R(k + ∆, ·))

]
Eν
[
R(k + ∆, ·)v′

(
P (k, ·) + (k + ∆)R(k + ∆, ·))

] =:
V1(∆)

V2(∆)

where we abuse our notation by writing just P (k, θ) rather than P (W (k, θ)). As V (0) =

P̃ (k), it suffices to show that V is increasing if either (T2) or (U2) holds. Observe that

V is C1 and the derivative satisfies V ′(∆) ≥ 0, if and only if

(k + ∆)V ′1(∆)V2(∆)− (k + ∆)V ′2(∆)V1(∆) ≥ 0. (A.6)

The derivatives in (A.6) compute as

V ′1(∆) = −(1− Ef ′(k + ∆))Eν
[
B(k, ·)R(k + ∆; ·)|v′′(−)|

]
(A.7)

V ′2(∆) = −Ef
′(k + ∆)

k + ∆
V2(∆)− (1− Ef ′(k + ∆))Eν

[
R(k + ∆; ·)2|v′′(−)|

]
. (A.8)

Suppose (T2) holds. Then, (A.7) and (U1) imply (k+∆)V ′1(∆) ≥ −(1−Ef ′(k+∆))V1(∆)

while −(k+∆)V ′2(∆) ≥ Ef ′(k+∆)V2(∆) due to (A.8). Using both inequalities together

with (T2) shows that (A.6) holds.

Second, suppose (U2) holds and let ∆ ≥ 0 be fixed. Consider the non-negative random

variables Y := P (k, ·)|v′′(P (k, ·) + (k + ∆)R(k + ∆, ·))| 12 and X := (k + ∆)R(k +

∆, ·)|v′′(P (k, ·)+(k+∆)R(k+∆, ·))| 12 both defined on the probability space (Θ,B(Θ), ν).

Then, V1(∆) = θ−1
(
Eν [Y 2 + XY ]

)
and (k + ∆)V2(∆) = θ−1

(
Eν [X2 + XY ]

)
, (k +

∆)V ′1(∆) = −(1−Ef ′(k+ ∆))Eν [XY ], and −(k+ ∆)2V ′1(∆) > (1−Ef ′(k+ ∆))Eν [X2].

Combining these inequalities shows that (A.6) is satisfied provided that(
Eν
[
X2
]) 1

2
(
Eν
[
Y 2
]) 1

2 ≥ Eν
[
|XY |

]
. (A.9)

But (A.9) follows from Hölder’s inequality (see Aliprantis & Border (2007, p.463 setting

p = q = 2 which implies 1
p

+ 1
q

= 1)).

Summarizing, we have proved that V is weakly increasing if either (T2) or (U2) hold

which implies the desired result

P̃ (k + ∆) ≥ V (∆) ≥ V (0) = P̃ (k).

Finally, adopting an argument used and proved in Morand & Reffett (2003, p.1360),

monotonicity of TP and w 7→ w − TP (w), w ∈W imply continuity of TP . �

25



A.3 Proof of Lemma 2.3

Let P ∈ G ′ be arbitrary. We need to show that TP is C1. Since P is C1, so are the

mappings P̃ , S, D, and Ñ defined in (A.1) and (A.2) and G defined in (A.5). Recall

that for each w ∈ W, KP determines the unique zero of G(·;w). Since ∂kG(k;w) > 0,

KP is C1 by the implicit function theorem. Thus, TP = P̃ ◦KP is C1 as well. �

A.4 Proof of Lemma 2.4

We only prove the strict inequalities, as the proof of the weak inequalities is analogous.

Given P1, P0 ∈ G ′, suppose P1 > P0. For λ ∈ [0, 1], define Pλ := λP1 + (1− λ)P0. Since

G ′ is convex, Pλ ∈ G ′ and the derivative satisfies 0 ≤ P ′λ ≤ 1 for all λ. Moreover, the

map λ 7→ Pλ = P0 + λ∆ where ∆ := P1 − P0 > 0 is strictly increasing.

Let w ∈ W be arbitrary but fixed. By Lemma 2.1 (and a slight abuse of notation),

for each λ ∈ [0, 1] there exists a unique pair (kλ, pλ) which solves H1(kλ, pλ;w, λ) =

H2(kλ, pλ;w, λ) = 0. We will now show that λ 7→ kλ, λ ∈ [0, 1] is strictly decreasing and

λ 7→ pλ, λ ∈ [0, 1] is strictly increasing. This implies p1 > p0 and k1 < k0 and the claim.

Employing the same definitions and notation as in the proof of Lemma 2.1, write

cλ(k, θ) := Pλ(W (k, θ)) + kR(k, θ). Then, the pair (kλ, pλ) satisfies pλ = P̃ (kλ, λ) where

P̃ (k, λ) :=
Eν
[
Pλ(W (k, ·))v′

(
cλ(k, ·)

)]
Eν
[
R(k, ·)v′

(
cλ(k, ·)

)] =:
N(k, λ)

D(k, λ)
, k ∈ K, λ ∈ [0, 1]. (A.10)

To compute the partial derivatives of D and N , note that ∂kW (k, θ) = Ef ′(k)R(k, θ) > 0

by (1a,b) implies ∂kcλ(k, θ) = R(k, θ)
(
Ef ′(k)P ′λ(−)+1−Ef ′(k)

)
> 0. Taking the deriva-

tive of (A.10) one obtains, exploiting (U1) and suppressing arguments when convenient

∂kN(k, λ) = Eν
[
P ′λ(•)Ef ′(k)R(k, ·)v′(•)− Pλ(•)|v′′(•)|∂kcλ(k, ·)

]
(A.11)

∂λN(k, λ) = Eν
[
∆(k, ·)

(
v′(•)− Pλ(W (k, ·))|v′′(•)|

)]
> 0 (A.12)

∂kD(k, λ) = −1

k
Eν
[
Ef ′(k)R(k, ·)v′(•) + kR(k, ·)|v′′(•)|∂kcλ(k, ·)

]
< 0 (A.13)

∂λD(k, λ) = −Eν
[
∆(k, ·)R(k, ·)|v′′(−)|

]
< 0 (A.14)

where ∆(k, θ) := P1(W (k, θ))− P0(W (k, θ)) > 0.

We show that dkλ
dλ

< 0. As kλ is the unique solution to G(k, λ) := u′(w− k− P̃ (k, λ))−
D(k, λ) = 0, the implicit function theorem yields the derivative

dkλ
dλ

= −∂λG(k, λ)

∂kG(k, λ)

∣∣∣
k=kλ

= − |u′′(•)|∂λP̃ (kλ, λ)− ∂λD(kλ, λ)

|u′′(•)|(1 + ∂kP̃ (kλ, λ))− ∂kD(kλ, λ)
. (A.15)

By (U1) and strict monotonicity of cλ, the map S(k, λ) := k+P̃ (k, λ) satisfies ∂kS(k, λ) =

1 + ∂kP̃ (k, λ) > 0. Further, combining (A.10) with (A.12) and (A.14) shows that

∂λP̃ (k, λ) > 0. Using these results with (A.13) and (A.14) in (A.15) gives dkλ
dλ

< 0.
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Second, we show that dpλ
dλ

> 0. As pλ = P̃ (kλ, λ) one obtains the derivative

dpλ
dλ

= ∂kP̃ (kλ, λ)
dkλ
dλ

+ ∂λP̃ (kλ, λ). (A.16)

Using (A.15), the derivative (A.16) can equivalently be written as

dpλ
dλ

=
|u′′(•)|∂λP̃ (kλ, λ) +M(kλ, λ)

|u′′(•)|(1 + ∂kP̃ (kλ, λ))− ∂kD(kλ, λ)
(A.17)

where M(k, λ) := ∂λD(k, λ)∂kP̃ (k, λ)−∂kD(k, λ)∂λP̃ (k, λ). By (A.13) and our previous

result, both the denominator and the first term in the numerator in (A.17) are strictly

positive. Hence, it suffices to show that M(kλ, λ) ≥ 0. Using the explicit form of the

derivatives ∂kP̃ and ∂λP̃ computed from (A.10), this last expression can be written as

M(k, λ) =
∂λD(k, λ)∂kN(k, λ)− ∂kD(k, λ)∂λN(k, λ)

D(k, λ)
.

Using (U1), (A.12), and (A.14) gives ∂λN(k, λ) ≥ −k∂λD(k, λ). Thus, it suffices to

show ∂kN(k, λ) + k∂kD(k, λ) ≤ 0. By (A.11) and (A.13), recalling that 0 ≤ P ′λ ≤ 1,

∂kN(k, λ) < Eν
[
P ′λ(•)Ef ′(k)R(k, ·)v′(•)

]
≤ Eν

[
Ef ′(k)R(k, ·)v′(•)

]
= −k∂kD(k, λ).

This shows that M(kλ, λ) ≥ 0 and proves the claim. �

A.5 Proof of Corollary 2.1

(i)TdP1 = T (P1 + d) ≥ T (P0 + d) = TdP0. (ii)Td1P = T (P + d1) ≥ T (P + d0) = Td0P . �

A.6 Proof of Theorem 1

(i) We show the fixed point property for d = 0. The proof for d > 0 is analogous. For

convenience, we drop the subscript d = 0 and denote the sequence (T nP0)n≥0 simply

as (Pn)n≥0 and its pointwise limit by P ∗. Also, for the sake of brevity we abuse our

notation by writing P (k, θ) instead of P (W (k, θ)).

Let w ∈W be arbitrary but fixed. As (Pn)n is a decreasing sequence of functions in G ′,

monotonicity of K• due to Lemma 2.4 implies that the sequence kn := KPn(w), n ≥ 0

is strictly increasing and converges to some limit 0 < k∗ ≤ K0(w) ≤ kmax. The claim

will follow if we show that k∗ and p∗ := P ∗(w) satisfy (12), i.e., H1(k∗, p∗;w,P ∗, 0) =

H2(k∗, p∗;w,P ∗, 0) = 0. Uniqueness of the solution to (12) then implies k∗ = KP ∗(w).

Let θ ∈ [θmin, θmax] be arbitrary but fixed. We show that limn→∞ Pn(kn, θ) = P ∗(k∗, θ).

As (Pn)n≥0 is a sequence of increasing functions which converges pointwise to the con-

tinuous function P ∗, convergence is uniform on W := [W (k0, θmin), wmax] ⊂ W by The-

orem A in Buchanan & Hildebrandt (1908). Note that W (kn, θ) ∈ W for n ≥ 0.
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Thus, for each δ > 0, there is n0 ≥ 0 such that |Pn(kn, θ) − P ∗(kn, θ)| < δ/2 for all

n ≥ n0. Further, by continuity of W and P ∗ there is n′0 > 0 such that n ≥ n′0 implies

|P ∗(kn, θ)−P ∗(k∗, θ)| < δ/2. Combining both insights, we have for all n ≥ max{n0, n
′
0}:

|Pn(kn, θ)− P ∗(k∗, θ)| ≤ |Pn(kn, θ)− P ∗(kn, θ)|+ |P ∗(kn, θ)− P ∗(k∗, θ)| < δ.

For θ ∈ [θmin, θmax], define the functions φ1
n(θ) := R(kn, θ)v

′(Pn(kn, θ) + knR(kn, θ)) and

φ2
n(θ) := Pn(kn, θ)v

′(Pn(kn, θ) + knR(kn, θ)). The previous result and continuity of v′

and R imply for each θ ∈ [θmin, θmax]

lim
n→∞

φ1
n(θ) = φ1

∗(θ) := R(k∗, θ)v′(P ∗(k∗, θ) + k∗R(k∗, θ))

lim
n→∞

φ2
n(θ) = φ2

∗(θ) := P ∗(k∗, θ)v′(P ∗(k∗, θ) + k∗R(k∗, θ)).

As φ1
n(θ) < R(k1, θmax)v′(k1R(k1, θmin)) and φ2

n(θ) < wmaxv
′(k1R(k1, θmin)) for all n, the

Lebesgue dominated convergence theorem implies limn→∞ Eν [φin(·)] = Eν [φi∗(·)], i = 1, 2.

This, limn→∞ Pn(w) = p∗ and limn→∞ u
′(w − Pn(w)− kn) = u′(w − p∗ − k∗) imply that

(12) is satisfied. Since w was arbitrary, P ∗ is a fixed point of T .

That d > 0 implies P ∗d > 0 follows directly from the Euler equations (11a,b) resp. (12).

To prove the stated properties of P ∗0 , we show that P ∗0 (w) = 0 for some w ∈W implies

P ∗0 (w) = 0 for all w ∈ W. Let w0 ∈ W be arbitrary and suppose P ∗0 (w0) = 0. If

w0 = wmax, the claim follows from monotonicity of P ∗0 , so suppose w0 < wmax. By (11b)

and (12), P ∗0 (w0) = 0 implies P ∗0 (W (KP ∗0
(w0), θ)) = 0 ν–a.s. As θmax is contained in the

support of ν, continuity of P ∗0 yields P ∗0 (W (K∗0(w0), θmax)) = 0. Moreover, (11a) and

(12) imply K∗0(w0) = K0(w0), the latter being defined by (5). Thus, under Assumption

3, w1 := W (K∗0(w0), θmax) satisfies w1 = W (K0(w0), θmax) > w0 and P ∗0 (w1) = 0.

Let w1 ≤ wn < wmax be any value for which P ∗0 (wn) = 0. Repeating the previ-

ous argument shows that wn+1 := W (K∗0(wn), θmax) = W (K0(wn), θmax) > wn and

P ∗0 (wn+1) = 0. Due to Assumption 3, the sequence (wn)n≥1 converges monotonically to

wmax and P ∗0 (wn) = 0 for all n ≥ 1 implies P ∗0 (wmax) = 0 due to continuity of P ∗0 .

The remaining inequalities follow as limits from the monotonicity of K• and T• due to

Lemma 2.4 and Corollary 2.1 which imply Pm
d > Pm

d′ and KPmd +d < KPm
d′ +d

′ for all m

which must (weakly) also hold in the limit. As for each w ∈ W, K∗d(w) is the unique

zero of Gd(k;w) = u′(w − k − P ∗d (w))− Eν [R(k, ·)v′(P ∗d (W (k, ·)) + d+ kR(k, ·))] which

is strictly increasing in d, the second inequality even holds strictly.

(ii) Follows directly from P ∗d ∈ G as shown in the main text and Lemma 2.2 (ii).

(iii) Follows directly from the previous results and Definitions 1 and 2. �

A.7 Proof of Lemma 2.5

Let (dn)n≥0 be a sequence converging monotonically to zero. For each n ≥ 1, define

(Pm
dn

)m≥1 as P0 = idW and Pm
dn

= TmdnP0 ∈ G ′ for m ≥ 1. This sequence is strictly
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monotonic and converges pointwise to P ∗dn ∈ G defined in (15). It follows from Theorem

1 (i) that the sequence of limits (P ∗dn)n≥1 is decreasing such that the limiting function

P ∗∗0 (w) := lim
n→∞

P ∗dn(w) (A.18)

is well-defined for all w ∈W. Denote by P ∗0 the limit in (15) for d = 0, i.e.,

P ∗0 (w) = lim
m→∞

TmP0(w) (A.19)

for w ∈W. We would like to show that P ∗∗0 = P ∗0 .

As Td is increasing in d by Corollary 2.1, Pm
dn

= TmdnP0 ≥ TmP0 = Pm
0 for all m which

implies P ∗dn ≥ P ∗0 for all n. Therefore, P ∗∗0 ≥ P ∗0 . We therefore need to show P ∗∗0 ≤ P ∗0 .

Suppose dn = 0 for all n ≥ n0. In this case n ≥ n0 implies Pm
dn

= TmdnP0 = TmP0 = Pm
0 for

all m ≥ 1 and, therefore, P ∗∗0 = P ∗0 . The remainder of the proof therefore assumes that

the dividend sequence is strictly positive, i.e., dn > 0 for all n and strictly decreasing.

We first show that P ∗∗0 in (A.18) is independent of the particular dividend sequence.

For i = 1, 2, let (din)n≥1 be a strictly positive sequence converging monotonically to zero.

Denote by P ∗∗,i0 the pointwise limit (A.18) induced by (din)n≥1. Now, for each n ≥ 1

there exists k ≥ 0 such that d1
n > d2

n+m for all m ≥ k. By Theorem 1(i), this implies

P ∗d1n ≥ P ∗
d2n+m

and, therefore, P ∗d1n(w) ≥ limm→∞ P
∗
d2n+m

(w) = P ∗∗,20 (w) for all w ∈ W.

Since n was arbitrary, P ∗∗,10 ≥ P ∗∗,20 . Reversing the argument gives P ∗∗,20 ≥ P ∗∗,10 .

We show that P > P ∗∗0 implies TP > P ∗∗0 for any P ∈ G ′. As P0 > P ∗∗0 and P0 ∈ G ′,

we then obtain by simple induction that TmP0 > P ∗∗0 for all m which proves P ∗0 ≥ P ∗∗0 .

Let P ∈ G ′ satisfy P > P ∗∗0 and ŵ ∈ W be arbitrary. We show TP (ŵ) > P ∗∗0 (ŵ).11

Given ŵ, define the compact set Wŵ := [W (KP (ŵ), θmin), wmax] ⊂W. We will construct

a function P̃ ∈ G ′ such that P > P̃ on Wŵ. Noting that only the behavior of P and P̃

on the interval Wŵ is relevant to compute TP (ŵ) and T P̃ (ŵ), the same arguments as

in the proof of Lemma 2.4 can then be used to show TP (ŵ) > TP̃ (ŵ).12

In order to construct such a P̃ , set δ := minw∈Wŵ
{P (w)−P ∗∗0 (w)} > 0. By Theorem A in

Buchanan & Hildebrandt (1908), there exists a d > 0 such that ‖P ∗d (w)−P ∗∗0 (w)‖∞ < δ
3

on Wŵ as P ∗d converges montonically to P ∗∗0 for d↘ 0 (here ‖·‖∞ denotes the supremum

norm). By the same argument, there exists m ∈ N such that ‖Tmd P0(w)−P ∗d (w)‖∞ < δ
3

on Wŵ as (Tmd P0)m≥0 converges pointwise to P ∗d . Define P̃ := Tmd P0 and note that

‖P̃ −P ∗∗0 ‖∞ < 2δ
3

on Wŵ. Further, P ∗∗0 < Tm+1

d̃
P0 < Td̃ ◦Tmd P0 on W for any 0 < d̃ < d.

Thus, P ∗∗0 < Td̃P̃ for any d̃ > 0 which implies P ∗∗0 ≤ T P̃ . This last results uses that

lim
n→∞

TdnP (w) = TP (w)

11If P ∗∗0 ∈ G ′, this follows trivially by monotonicity of T and the fixed point property TP ∗∗0 = P ∗∗0
which can be established as in the proof of Theorem 1. Unfortunately, however, we only know P ∗∗0 ∈ G .

12Observe that any convex combination Pλ = λP + (1 − λ)P̃ lies between P and P̃ . Therefore, by

monotonicity of K•, W (KPλ(ŵ), θ) ∈Wŵ for all θ ∈ [θmin, θmax].
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for all P ∈ G ′, w ∈ W and any monotonic sequence (dn)n converging to zero.13 Com-

bining these results we get TP (ŵ) > TP̃ (ŵ) > P ∗∗0 (ŵ) for any ŵ ∈W.

To show that limn→∞K
∗
dn

(w) = K∗0(w) for each w ∈W, note that (K∗dn(w))n is increas-

ing by Theorem 1 (i) and converges to some limit k∗ ≤ K0(w). By the same arguments

used in the proof of Theorem 1 (i), k∗ and p∗ := P ∗0 (w) satisfy the Euler equations at

P = P ∗0 and d = 0 which implies k∗ = KP ∗0
(w) by uniqueness of the solution to (12). �

B Efficiency and Inefficiency of MEA

In this appendix, we review the recursive characterization of interim Pareto optimality

for stationary exchange economies obtained in Barbie & Kaul (2015) and adapt their

results to characterize the optimality of ME in a stochastic production economy. As large

parts of the analysis holds almost unchanged and requires mainly notational changes,

we refer at many places the reader to Barbie & Kaul (2015) for the details and proofs

and just repeat the core facts. To adapt the results, we need the characterization of

interim optimality for production OLG models from Barbie, Hagedorn & Kaul (2007)

who extended the pure exchange case in Chattopadhyay & Gottardi (1999).

B.1 Notation and definitions

Let A = (K,Cy, Co) be a continuous, bounded MEA defined as in Section 3.2 and

W = [w,wmax] be a stable set of A. Fixing the initial shock θ0 ∈ Θ permits W to be

used as the state space which corresponds to the set S in Barbie & Kaul (2015). To

adapt our notation to their setup, note that any two successive states w and w′ permit

to recover the shock in the second period via θ′ = w′/W (K(w), 1). Thus, define the

(modified) pricing kernel m : W×W −→ R++

m(w,w′) :=
v′ (Co(w,w′/W (K(w), 1)))

u′(Cy(w))
. (B.1)

Denote by B(W) the Borel-σ algebra on W. As shocks are i.i.d., function K defines a

transition probability Q : W×B(W) −→ [0, 1],

Q(w,G) := ν({θ ∈ Θ |W (K(w), θ) ∈ G.}). (B.2)

Note that Q has the Feller property since the function W ◦ K is continuous. By the

change-of variable formula, the inequality (18) can be written as∫
W
η(w′)m(w,w′)Q(w, dw′) > η(w). (B.3)

13To see this, fix w ∈ W and let pn := TdnP (w) and kn := KP+dn(w). By Corollary 2.1 and

monotonicity of K•, these sequences converge monotonically to values p∗ ≥ 0 and k∗ > 0, respectively.

As Hi(kn, pn, w, P, dn) = 0 for all n and i = 1, 2, continuity of Hi implies Hi(k∗, p∗, w, P, 0) = 0.

Uniqueness of the solution to (12) implies p∗ = TP (w) and k∗ = KP (w).
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To adapt their formal arguments the remainder follows Barbie, Hagedorn & Kaul (2007)

by assuming that the shock-process is finite-valued, i.e., Θ = {θ1, . . . , θN}. Thus, if

wt ∈ W is the state in period t, the are n successive states wt+1 = W (K(wt), θt+1). If

w′ ∈ W is a such a successor, we write w′ � wt. With this notation, an integral of the

form (B.3) can be written as
∑

w′�w η(w′)m(w,w′)Q(w,w′).

Given some initial state w0 ∈W, denote byW t(w0) the set of histories wt = (w0, . . . , wt)

observed up to time t, i.e., wn � wn−1 for all n = 1, . . . , t. Further, let W∞(w0) denote

the set of all infinite histories w∞ = (w∞t )t≥0, i.e., w∞t � w∞t−1 for all t ≥ 1 and w∞0 = w0.

For any infinite path w∞ ∈ W∞(w0), denote by (w∞)t the induced history up to time

t ≥ 0 along this path, i.e. (w∞)t = (w∞0 , w
∞
1 , ..., w

∞
t ) ∈ W t(w0).

Similar to Chattopadhyay & Gottardi (1999), define for each wt ∈ W t(w0) the set

weights14

U(wt) =

{
λ(wt, w′) ∈ R+ | w′ � wt,

∑
w′�wt

λ(wt, w′)Q(wt, w
′) = 1

}
.

Given some w0 ∈ W, define U∞ (w0) to be the family of weights λ∞ = (λ(wt, ·))t≥1

where wt ∈ W t(w0) and λ(wt, ·) ∈ U(wt) for all t.

B.2 Recursive characterization of inefficiency

Barbie, Hagedorn & Kaul (2007) derive a condition for interim Pareto inefficiency in a

stochastic Diamond model. For a MEA A which satisfies the restrictions from Lemma

3.1, the necessary part of this result can be stated as follows.

Lemma B.1

If A = (K,Cy, Co) is inefficient at w0 ∈W, there exists a family of weights λ∞ ∈ U∞ (w0)

and a constant C ≥ 0 such that for each path w∞ ∈ W∞(w0)

∞∑
i=0

i∏
j=0

λ
(
(w∞)j, w∞j+1

)
m
(
w∞j , w

∞
j+1

) ≤ C. (B.4)

As noted in Barbie & Kaul (2015), the condition (B.4) can be restated as a minimax

problem. The max-part is taking the supremum over all possible paths, the min-part is

taking the infimum over all possible weights. For any w0 ∈W, define the value function

J∗ (w0) := inf
λ∞∈U∞(w0)

sup
w∞∈W∞(w0)

 1 +
∞∑
i=0

i∏
j=0

λ
(

(w∞)j , w∞j+1

)
m
(
w∞j , w

∞
j+1

)
 . (B.5)

14As explained in detail in Barbie & Kaul (2015), the definition of a weight given in Chattopadhyay

& Gottardi (1999) (and also in Barbie, Hagedorn & Kaul (2007)) is slightly different from here (and

in Barbie & Kaul (2015)). Because Chattopadhyay & Gottardi (1999) use an abstract date-event tree

setting without objective probabilities, their definition is without probablities, but equivalent to the

one given here.
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The next result follows immediately from Lemma B.1 and (B.5).

Corollary B.1

If A is inefficient at w0 ∈W, then J∗(w0) <∞.

Following Barbie & Kaul (2015) we show that (B.5) defines a recursive structure per-

mitting J∗ to be computed as a fixed point of some operator Z. For each w ∈W, denote

the set of all stationary weights

U(w) =

{
λ(w,w′) ∈ R+ |w′ � w,

∑
w′�w

λ(w,w′)Q(w,w′) = 1

}
.

Define the operator Z which associates with any nonnegative extended real-valued func-

tion J : W −→ R+ ∪ {+∞} the new function ZJ defined for all w ∈W as

ZJ(w) := 1 + inf
λ(w,·)∈U(w)

sup
w′�w

{
λ (w,w′)

m (w,w′)
· J (w′)

}
. (B.6)

Note that Z is monotonic, i.e., J1 ≥ J2 implies ZJ1 ≥ ZJ2. The operator Z can now be

used to compute a value function that solves the functional equation (B.6). Construct

the sequence (Jn)n≥0 of functions Jn defined on W recursively by setting J0 ≡ 1 and

Jn = ZJn−1 for n ≥ 1. For each w ∈W, define the function

J∞ (w) := lim
n→∞

Jn(w). (B.7)

Note that the pointwise limit in (B.7) exists since the sequence (Jn)n≥0 is increasing.

We now have the following result. The proof is the same as in Barbie & Kaul (2015) for

Theorem 1 and Proposition 2 (with the appropriate notational changes).

Lemma B.2

The function J∞ defined in (B.7) is a fixed point of Z that coincides with the value

function J∗ defined in (B.5), i.e., J∞ = ZJ∞ = J∗.

B.3 Proof of Lemma 3.1 (i)

By Corollary B.1, if A is inefficient then J∗(w0) < ∞ for all w0 ∈ W. Set η(w) :=

1/J∗(w) for w ∈ W. It follows from the same arguments as in the proofs of Proposi-

tion 4 and Theorem 2(a) in Barbie & Kaul (2015) that η is a strictly positive, upper-

semicontinuous function which takes values in the unit interval (since J∗ > 1) and

satisfies (B.3) for all w ∈ W. As boundedness of A permits to choose the lower bound

w arbitrarily small, the previous construction of η can be extended to the entire interval

W =]0, wmax]. �
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B.4 Proof of Lemma 3.1 (ii)

In this section we present a new additional sufficient condition under which the function

η constructed as in the previous subsection is continuous, not just upper-semicontinuous.

We will then argue that this condition is satisfied if the kernel mA exhibits the mono-

tonicity property required in Lemma 3.1 (ii). We have the following result:

Lemma B.3

Suppose J∗ = J∞ defined in (B.7) is uniformly bounded on W, i.e., there exists a

constant M ≥ 0 such J∗(w) ≤M for all w ∈W. Then η = 1/J∗ is continuous.

Proof: Construct the sequence (Jn)n≥0 as above by setting J0 ≡ 1 and Jn = ZJn−1

for n ≥ 1. Recall that J1 > 1 = J0 and monotonicity of Z imply that (Jn)n≥0 is

strictly increasing, i.e., Jn > Jn−1 for all n ≥ 0. By Lemma B.2, we know that the

pointwise limit J∗ defined in (B.7) is a fixed point of Z. We will show that under

the hypotheses of Lemma B.3, (Jn)n≥1 is a Cauchy sequence in the space of bounded

continuous functions on W. As this space is complete, the sequence must converge to

some bounded continuous function, which coincides with the pointwise limit J∗.

First, we show that each Jn is of the form Jn(w) = 1+c∗n(w) for some continuous function

c∗n : W −→ R+. Clearly, this holds trivially for n = 0 and c∗0 ≡ 0. By induction, suppose

Jn−1(w) = 1+ c∗n−1(w) for some n ≥ 1. For each w ∈W and w′ � w, define the function

λ∗n(w,w′) :=
m(w,w′)

Jn−1(w′)
c∗n(w) (B.8)

where c∗n is chosen such that
∑

w′�w λ
∗
n(w,w′)Q(w,w′) = 1 for all w ∈W, i.e.,

c∗n(w) :=

[∑
w′�w

m(w,w′)

Jn−1(w′)
Q(w,w′)

]−1

. (B.9)

Note that λ∗n is continuous and attains the infimum in (B.6). Hence,

Jn(w) = 1 + max
w′�w

λ∗n(w,w′)

m(w,w′)
Jn−1(w′) = 1 + c∗n(w). (B.10)

As continuity of c∗n−1 implies continuity of c∗n, this proves that each Jn is continuous

and, therefore, bounded on the compact set W.

Defining λ∗n by (B.8) for each n ≥ 1 we can now use the first equality in (B.10) to expand

Jn for all w0 ∈W as

Jn(w0) = 1 + max
w1�w0

λ∗n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗n−1(w1, w2)

m(w1, w2)
Jn−2(w2)

]
= 1 + max

w1�w0

λ∗n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗n−1(w1, w2)

m(w1, w2)

[
. . .[

1 + max
wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)

]
. . .

]]
. (B.11)
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The final term in (B.11) satisfies 1 + maxwn�wn−1

λ∗1(wn−1,wn)

m(wn−1,wn)
= J1(wn−1) = 1 + c∗1(wn−1).

Clearly, λ∗n does not necessarily attain the infimum when defining Jn+1 by (B.6). There-

fore, for all w0 ∈W, recalling that J1(w) = 1 + c∗1(w)

Jn+1(w0) = 1 + max
w1�w0

λ∗n+1(w0, w1)

m(w0, w1)
Jn(w1)

≤ 1 + max
w1�w0

λ∗n(w0, w1)

m(w0, w1)
Jn(w1)

≤ 1 + max
w1�w0

λ∗n(w0, w1)

m(w0, w1)

[
1 + max

w2�w1

λ∗n−1(w1, w2)

m(w1, w2)

[
. . . (B.12)

1 + max
wn−1�wn−2

λ∗2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
(1 + c∗1(wn))

]
. . .

]]
.

By elementary observations15, the final term in (B.12) satisfies for any wn−2 ∈W

max
wn−1�wn−2

λ∗2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
(1 + c∗1(wn))

]
≤ max

wn−1�wn−2

λ∗2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
+ max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
c∗1(wn)

]
≤ max

wn−1�wn−2

λ∗2(wn−2, wn−1)

m(wn−2, wn−1)

[
1 + max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)

]
+ max

wn−1�wn−2

λ∗2(wn−2, wn−1)

m(wn−2, wn−1)
max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
c∗1(wn).

Solving (B.12) in this recursive fashion and using (B.11) we obtain for all n and w0 ∈W

Jn+1(w0) ≤ Jn(w0) + max
w1�w0

λ∗n(w0, w1)

m(w0, w1)
· · · max

wn�wn−1

λ∗1(wn−1, wn)

m(wn−1, wn)
c∗1(wn). (B.13)

Using (B.8) and (B.10) in (B.13) we obtain for all n ∈ N and w0 ∈W

Jn+1(w0)− Jn(w0) 6 max
w1�w0

c∗n(w0)

1 + c∗n−1(w1)
· max
w2�w1

c∗n−1(w1)

1 + c∗n−2(w2)
... max

wn�wn−1

c∗1(wn−1) · c∗1(wn)

= c∗n(w0) · max
w1�w0

c∗n−1(w1)

1 + c∗n−1(w1)
. . . max

wn−1�wn−2

c∗1(wn−1)

1 + c∗1(wn−1)
· max
wn�wn−1

c∗1(wn).

Since M > J∗(w) > Jn(w) = 1 + c∗n(w) > c∗n(w) for any w ∈W and n ∈ N, we get

0 <Jn+1(w)− Jn(w) 6M2 ·
(

M

1 +M

)n−1

15These are maxx{A(x) +B(x)} ≤ maxx{A(x)}+ maxx{B(x)} and maxx{A(x)}maxy∈G(x){B(y) +

C(y)} ≤ maxx{A(x)}maxy∈G(x){B(y)} + maxx{A(x)}maxy∈G(x){C(y)} for real-valued functions A,

B, C and some correspondence G.
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for all w ∈W. But this means that

‖Jn+1 − Jn‖∞ 6 B (β)n−1

where ‖ · ‖∞ is the supremum norm on the space of bounded continuous functions on W
and B > 0 and 0 < β < 1. By standard arguments, this implies

‖Jn+m − Jn‖∞ 6 Bβn−1 1

1− β

for all n,m > 0 and so (Jn)n≥0 is a Cauchy sequence, as was to be shown. �

Now suppose mA defined in (17) is monotonically increasing. We show that this implies

the hypothesis of Lemma B.3. Using the change of variable formula in (B.9) yields

1

c∗n(w)
=
∑
w′�w

m(w,w′)

1 + c∗n−1(w′)
Q(w,w′) = Eν

[
mA(w, ·)

1 + c∗n−1(W (K(w), ·))

]
.

As the term to the far right is a strictly increasing function whenever c∗n−1 is decreasing,

it follows by induction that each Jn(w) = 1 + c∗n(w), w ∈W is strictly decreasing which

implies Jn(w) ≤ Jn(w) for all n. Taking the limit gives J∗(w) ≤ J∗(w) for all w ∈ W.

Finally, if A is inefficient at w0, monotonicity of J∗ implies J∗(w′0) ≤ J∗(w0) < ∞ also

for w0 ≥ w′0, i.e., A is also inefficient for all w0 ≥ w′0. �

B.5 Proof of Lemma 3.2

For each w ∈ W and θ ∈ Θ, define Co
0(w, θ) := K0(w)R(K0(w), θ) and m̃(w) :=

Eν [R(K0(w), ·)v′(Co
0(w; ·))]. Using (5), the pricing kernel m0 can be written as

m0(w, θ) = v′(Co
0(w, θ))/m̃(w).

Let w ∈ W and θ ∈ Θ be arbitrary but fixed and set c0 := Co
0(w, θ) and k0 := K0(w).

Then, by direct computations

∂m0

∂w
(w, θ) =

K′0(w)

k0[m̃(w)]2

[
v′′(c0)c0(1− Ef ′(k0))m̃(w) + v′(c0)Ef ′(k0)m̃(w)

−v′(c0)(1− Ef ′(k0))Eν [R(k0, ·)C0(w, ·)v′′(C0(w, ·))]
]
.

Only the first term in brackets is negative while the other two are strictly positive.

Suppose (T2) holds. Then, 1 − Ef ′(k0) ≤ Ef ′(k0) and v′′(c0)c0 ≥ −v′(c0) due to (U1)

imply that the first term is dominated by the second one. Suppose (U2) holds. Then,

v′′(c0)c0 = −θv′(c0) and Eν [R(k0, ·)Co
0(w, ·)v′′(Co

0(w, ·))] = −θm̃(w) imply that the first

term is dominated by the third one. Conclude that ∂m0

∂w
(w; θ) > 0 in either case. �

35



B.6 Proof of Lemma 3.3

As both Cy and Co are continuous, strictly positive functions on their compact do-

mains W and W × Θ, respectively, we can choose α > 0 such that the ’perturbed’

allocation (K,Cy
α, C

o
α) defined as Cy

α(w) := Cy(w) − αη(w) and Co
α(w, θ) = Co(w, θ) +

αη(W (K(w), θ)) is strictly positive and feasible for all α ∈ [−α, α] and w ∈ W. Thus,

given w ∈W, the map h(α;w) := u(Cy
α(w)) + Eν [v(Co

α(w, ·))] is well-defined and deter-

mines the utility of a generation born in state w ∈W under the perturbation α ∈ [−α, α].

We will determine α∗ > 0 such that h(α∗;w)− h(0;w) > 0 for all w ∈W, i.e., the per-

turbed allocation improves the utility of any generation. Let w ∈W be fixed. As h(·;w)

is twice continuously differentiable on the open interval ]− α, α[, we have

h(α;w)− h(0;w) = h′(0;w)α +
1

2
h′′(ξ;w)α2

for 0 ≤ α ≤ α and some 0 < ξ < α that may depend on both w and α. By hypothesis,

h′(0;w) = −u′(Cy(w))η(w) + Eν [v′(Co(w, ·))η(W (K(w, ·))] > 0

for all w. Further, using the Lebesgue-dominated convergence theorem

h′′(ξ;w) = u′′(Cy
ξ (w))(η(w))2 + Eν

[
v′′
(
Co
ξ (w, ·)

)
(η(W (K(w), ·)))2

]
< 0.

By the Lebesgue dominated convergence theorem again, both mappings w 7→ h′(0;w)

and (ξ;w) 7→ h′′(ξ;w) are continuous on W and [0, α] ×W, respectively. Thus, there

exist ∆1 > 0 and ∆2 < 0 such that h(α;w)− h(0;w) > ∆1α + ∆2α
2 for all w ∈W and

α ∈ [0, α]. Choosing α∗ > 0 sufficiently small therefore ensures that h(α∗;w) > h(0;w)

for all w ∈W. �
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